ᶴ sin x dx= - cos x + C
ᶴ cos x dx = sin x + C
ᶴ sec2 x dx = tan x + C
ᶴ sec x tan x = sec x + C
ᶴ csc2 x dx = - cot x + C
ᶴ csc x cot x dx = - csc x + C
ᶴ cos x dx = sin x + C
ᶴ sec^2 x dx = tan x + C
ᶴ sec x tan x = sec x + C
ᶴ csc^2 x dx = - cot x + C
ᶴ csc x cot x dx = - csc x + C
Trigonometric
Identities
cos^2 Ө + sin^2 Ө = 1
1 + tan^2 Ө = sec^2 Ө
1 + cot^2 Ө = csc^2 Ө
Addition Formula
cos (A + B) = cos A cos B – sin A cos B
sin (A + B) = sin A cos B + cos A sin B
Double Angle Formula
cos 2Ө = cos^2 Ө - sin^2 Ө
sin 2Ө = 2 sin Ө cos Ө
Half-Angle Formula
Natural Logarithm
∫ 1/u du = ln |u| + C
Exponential Functions
∫ e^u du = e^u + C
General Exponential Functions
∫ a^u du = a^u/ln a + C
Inverse Trigonometric Functions
Hyperbolic Functions
∫ sinh u du = cosh u + C
∫ cosh u du = sinh u + C
∫ sech^2 u du = tanh u + C
∫ csch^2 u du = - coth u + C
∫ sech u tanh u du = - sech u + C
∫ csch u coth u du = - csch u + C
Inverse Hyperbolic Functions
Completing the Square
ax^2 + bx + c = 0
x^2 + b/a x + c/a = 0
Trigonometric Identities
- summation of two terms
power two
- Different angle
ᶴ csc x dx = -ln l csc x + cot x l + C
ᶴ sec x dx = ln l sec x + tan x l + C
ᶴ tan x dx = -ln l cos x l + C
ᶴ cot x dx = ln l sin x l + C
Improper Fraction
ᶴ polynomial/polynomial
(Degree of numerator ≥ Degree of
denominator)
Long Division Method
Separating Functions
(a + b)/c = a/c + b/c
Multiplying by a Form of 1
Eliminating Square Roots
Trigonometric Functions win the Square Root
the Trigonometric Functions can be Simplified to Eliminate the Square Roots
Integration by Parts
Either function is not the differential coefficient of the other
eg:: ᶴ x^2 ln x dx
ᶴ u dv = uv – ᶴ v du
Trigonometric Integrals
ᶴ sin2 x dx = ½ ᶴ ( 1 – cos 2x) = x/2 – sin2x/4 + C
ᶴ cos2 x dx = ½ ᶴ ( 1 + cos 2x) = x/2 + sin2x/4 + C