Hora de praticar!
\(\displaystyle\lim_{x \to 2} 3^x = 9\)
\(\displaystyle\lim_{x \to -1 }\left(\frac{1}{2}\right)^x = \frac{1}{2}\)
\(\displaystyle\lim_{x \to -\infty }\left(\frac{1}{3}\right)^x = +\infty\)
\(\displaystyle\lim_{x \to 1 }2^{2x^2-3x+1} = 1\)
Calcule \[\displaystyle\lim_{x \to \infty }\left(1 + \frac{2}{x} \right)^{3x}\]
\(e^3\)
\(e^6\)
\(e^5\)
\(e^4\)
Calcule \[\displaystyle\lim_{x \to 0 }\left(\frac{sen 4x}{x}\right)\]
\(\frac{1}{4}\)
4
\(\frac{1}{3}\)
3
6
Calcule \[\displaystyle\lim_{x \to 0 }\left(\frac{sen 3x}{sen 5x}\right)\]
\(\frac{5}{6}\)
\(\frac{5}{3}\)
\(\frac{3}{5}\)
\(\frac{1}{5}\)
Calcule \[\displaystyle\lim_{x \to \infty }\left(1 + \frac{3}{x}\right)^x\]
\(3\)
\(e^x\)
\(e^2\)
Calcule \[\displaystyle\lim_{x \to 0}\left(\frac{tgx}{x}\right)\]
1
0
\(\nexists\)
2