N={0,1,2,3,4,5,6,...}
O número zero é o primeiro elemento desse conjunto. O sucessor de cada número nesse conjunto é igual à soma dele mesmo com uma unidade, ou seja, o sucessor de 3 será 4 pois 3+1=4.
Para representar o conjunto dos números naturais não-nulos (ou seja, diferentes de zero), deve-se colocar um * ao lado do símbolo:
N∗={1,2,3,4,5,6,...}
Em determinada época da história, se fez necessário a criação de números que representassem “perdas”, ou “dívidas”. Surgiram, assim, os números negativos. Esses números negativos, junto com os números naturais, formam o conjunto dos números inteiros:
Z={...,−3,−2,−1,0,1,2,3,...}
Nesse conjunto, para cada número há o seu oposto, ou seu simétrico, por exemplo, 3 e -3 são opostos ou simétricos.
Veja que todo número natural é inteiro, mas nem todo número inteiro é natural. Dizemos que o conjunto dos números naturais está contido no conjunto dos números inteiros.
Com a necessidade de descrever partes de algo inteiro, surgiram as frações. Quando adicionamos as frações aos números inteiros, obtemos os números racionais. São exemplos números racionais:
Q={−1,−25,43,5,...}
Formalmente, um número racional é todo aquele que pode ser escrito na forma de uma fração. Assim,
Q={x/x=ab,a∈Z,b∈Z,b≠0}
Observe que todo número inteiro é racional, mas nem todo número racional é inteiro. Por exemplo, -1 é inteiro e é racional, mas 4/3 é racional e não é inteiro. Assim, o conjunto dos números inteiros está contido no conjunto dos números racionais:
O conjunto dos números irracionais é composto por todos os números que não são possíveis de se descrever como uma fração. É o caso das raízes não exatas, como √–2, √-3, √–5, e do número π, do logaritmo neperiano, o número de ouro ϕ (fi), por exemplo.
Este conjunto não está contido em nenhum dos outros três, ou seja, nenhum número irracional é racional, inteiro ou natural e nenhum número natural, inteiro ou racional é irracional.
Da reunião do conjunto dos números racionais com os números irracionais obtemos o conjunto dos números reais. Podemos dizer que o conjunto dos números reais é formado por todos os números que podem ser localizados em uma reta numérica.
Assim, todo número que é irracional é real, assim como os naturais, inteiros e racionais.
Os números complexos formam um conjunto numérico que é mais abrangente que os números reais. Eles surgiram após inúmeros estudos, sobretudo após tentativas de se resolver equações do segundo e do terceiro grau. Nessa época, os matemáticos se depararam raízes quadradas de números negativos, que não podem ser expressas no conjunto dos números reais. Assim, os matemáticos passaram a denotar essas raízes usando a letra “i”. A base principal foi adotar i=√−1.