Pregunta 1
Pregunta
Sound is a fluctuation of air pressure in [[blank_start]Pa[blank_end]].
Pregunta 2
Pregunta
The [blank_start]sound pressure[blank_end] is a local pressure deviation of a compressible sound transmission medium which occur by spreading of sound.
Pregunta 3
Pregunta
The human hearing threshold is approximately
Respuesta
-
20 µPa
-
40 µPa
-
20 Pa
-
40 Pa
-
50 hPa
Pregunta 4
Pregunta
The human pain threshold is approximately [blank_start]1.000.000[blank_end] times higher than the hearing threshold.
Pregunta 5
Pregunta
The sound [blank_start]frequency[blank_end] is the number of pressure fluctuations per second. Unit: [[blank_start]Hz[blank_end]]
Pregunta 6
Pregunta
Speed of sound:
c = [blank_start]lambda[blank_end] * [blank_start]f[blank_end]
Pregunta 7
Pregunta
The speed of sound [blank_start]increases[blank_end] with the density of the medium.
Pregunta 8
Pregunta
In transition from one medium to another, sound can be
Respuesta
-
absorbed
-
transmitted
-
reflected
Pregunta 9
Pregunta
Sound intensity level:
L = [blank_start]20[blank_end] * [blank_start]log10[blank_end]([blank_start]p[blank_end] / [blank_start]p0[blank_end])
Doubling of p results in an increase of sound intensity by [blank_start]6[blank_end] dB.
Loudness is perceived in a [blank_start]logarithmic[blank_end] gradation.
Respuesta
-
20
-
10
-
log10
-
log2
-
ln
-
p
-
p0
-
6
-
logarithmic
-
exponential
-
linear
Pregunta 10
Pregunta
Humans have their highest sensitivity between [blank_start]1[blank_end] and [blank_start]4[blank_end] [blank_start]kHz[blank_end].
Human speech is roughly between [blank_start]1[blank_end] and [blank_start]2[blank_end] [blank_start]kHz[blank_end].
Respuesta
-
kHz
-
Hz
-
kHz
-
Hz
-
1
-
2
-
10
-
20
-
4
-
40
-
10
-
20
-
1
-
2
-
10
-
20
-
2
-
20
-
40
-
4
Pregunta 11
Pregunta
The communication channel correlates with the [blank_start]body volume[blank_end].
Pregunta 12
Pregunta
Hearing range:
Babies: [blank_start]20[blank_end] - [blank_start]20.000[blank_end] Hz
Young adult: ... - [blank_start]15.000[blank_end] Hz
Older people: ... - [blank_start]5.000[blank_end] Hz
Respuesta
-
20
-
10
-
200
-
100
-
1000
-
20.000
-
40.000
-
10.000
-
15.000
-
5.000
-
2.000
Pregunta 13
Pregunta
The external ear consists of the [blank_start]pinna[blank_end] to capture sound and the [blank_start]ear canal[blank_end] to transmit sound.
Pregunta 14
Pregunta
Pinna and ear canal amplify frequencies between [blank_start]2 and 4 kHz[blank_end] by a factor of [blank_start]8[blank_end].
This [blank_start]is not[blank_end] uniformly effective for every direction.
Respuesta
-
is not
-
is
-
2 and 4 kHz
-
1 and 4 kHz
-
8 and 10 kHz
-
2 and 8 kHz
-
8
-
4
-
2
-
16
Pregunta 15
Pregunta
External ear and middle ear are separated by the [blank_start]tympanum[blank_end].
Pregunta 16
Pregunta
The middle ear is connected to the [blank_start]pharynx[blank_end] (jaw) by the [blank_start]Eustachian tube[blank_end].
Pregunta 17
Respuesta
-
tympanum
-
malleus
-
incus
-
stapes
Pregunta 18
Pregunta
The middle ear is filled with [blank_start]air[blank_end].
It works as an impedance [blank_start]converter[blank_end] to balance different air pressures between outer and inner ear.
It also allows impedance [blank_start]matching[blank_end] of sound traveling in air to acoustic waves traveling in a system of fluids and membranes in the inner ear.
The area of the tympanum is much [blank_start]bigger[blank_end] than the stapes footplate and the chain of ossicles (malleus, incus, stapes) work as a [blank_start]lever[blank_end].
Respuesta
-
air
-
converter
-
matching
-
bigger
-
lever
Pregunta 19
Pregunta
Besides the sense of hearing the inner ear contains two more organs of perception:
- Sense of linear [blank_start]acceleration[blank_end]
- Sense of [blank_start]rotation[blank_end]
They all use [blank_start]hair cells[blank_end] in [blank_start]fluids[blank_end] to detect sound or balance.
Respuesta
-
hair cells
-
fluids
-
acceleration
-
rotation
Pregunta 20
Pregunta
The labyrinth in the inner ear:
The membranous labyrinth is filled with [blank_start]K+[blank_end] rich [blank_start]endolymph[blank_end].
The bony labyrinth is filled with [blank_start]Na+[blank_end] rich [blank_start]perilymph[blank_end].
The hair cells are contained in the [blank_start]membranous[blank_end] labyrinth.
Respuesta
-
membranous
-
bony
-
endolymph
-
perilymph
-
K+
-
Cl-
-
Ca2+
-
Na+
Pregunta 21
Pregunta
The three scalae of the cochlea
Respuesta
-
scala vestibuli
-
scala tympani
-
scala media
Pregunta 22
Pregunta
Inner hair cells:
- [blank_start]1[blank_end] row
- [blank_start]ca. 3.500[blank_end] cells
- provide [blank_start]neural output[blank_end]
Outer hair cells:
- [blank_start]3[blank_end] rows
- [blank_start]ca. 12.000[blank_end] cells
- provide [blank_start]amplification[blank_end]
Respuesta
-
1
-
ca. 3.500
-
neural output
-
3
-
ca. 12.000
-
amplification
Pregunta 23
Pregunta
There are roughly [blank_start]30.000[blank_end] spiral ganglion cells, which belong to the [blank_start]peripheral[blank_end] nervous system.
Afferent SGC lead to the [blank_start]cochlear nucles[blank_end].
Most afferent SGC innervate [blank_start]exactly 1 IHC[blank_end].
Efferent SGC come from the [blank_start]superior olivary complex[blank_end].
Most efferent SGCs innervate [blank_start]multiple OHCs[blank_end].
Respuesta
-
30.000
-
20.000
-
3.000
-
200.000
-
peripheral
-
central
-
cochlear nucles
-
exactly 1 IHC
-
superior olivary complex
-
multiple OHCs
Pregunta 24
Pregunta
[blank_start]Outer[blank_end] hair cells possess a unique motor protein called [blank_start]prestin[blank_end], which causes them to contract every time they are depolarized.
Pregunta 25
Pregunta
The mechanical frequency analysis in the cochlea is done via the basilar membrane.
The base is [blank_start]100µm[blank_end] wide, [blank_start]thick and taut[blank_end] and sensitive to [blank_start]high[blank_end] frequencies.
The apex is [blank_start]500 µm[blank_end] wide, [blank_start]thin and floppy[blank_end] and sensitive to [blank_start]low[blank_end] frequencies.
Different stiffness at different points results in different frequencies creating vibration maxima at different points!
This is a [blank_start]passive[blank_end] frequency analysis.
There are also [blank_start]more[blank_end] hair cells (and therefore a [blank_start]higher[blank_end] resolution) at positions corresponding to low frequencies.
Respuesta
-
100µm
-
thick and taut
-
high
-
low
-
thin and floppy
-
500 µm
-
passive
-
active
-
more
-
less
-
higher
-
lower
Pregunta 26
Pregunta
The hair cells' organelles that respond to fluid motion are called [blank_start]stereocilia[blank_end].
Hair cells cannot create APs but they can induce APs in nerve cells from mechanical energy. When the stereocilia are lifted up [blank_start]K+[blank_end]-channels open and the cells are depolarized causing transmitter release at the synapse to the SGC.
Pregunta 27
Pregunta
Ascending pathway
Respuesta
-
cochlea
-
cochlear nucleus
-
trapezoid body
-
superior olivary complex
-
lateral lemniscus
-
inferior colliculus
-
medial geniculate body
-
auditory cortex
Pregunta 28
Pregunta
The descending pathway of the auditory system is possibly involved in selective attention. It uses [blank_start]inhibition[blank_end] by negative feedback.
The pathway is called the [blank_start]olivocochlear[blank_end] pathway.
Pregunta 29
Pregunta
Cell types of the cochlear nucleus:
[blank_start]Bushy[blank_end] cells receive input via large [blank_start]excitatory[blank_end] [blank_start]Endbulbs of Held[blank_end] and send output to the [blank_start]superior olivary nucleus[blank_end] via large synapses, called [blank_start]Calyx of Held[blank_end].
Bushy cells have the largest synapses in the brain, which leads to [blank_start]great[blank_end] temporal precision and an [blank_start]exact[blank_end] resolution (1 spike for 1 spike).
Respuesta
-
Bushy
-
Pyramidal
-
Held
-
excitatory
-
inhibitory
-
Endbulbs of Held
-
Calyx of Held
-
superior olivary nucleus
-
inferior colliculus
-
lateral lemniscus
-
Calyx of Held
-
Endbulbs of Held
-
great
-
poor
-
exact
-
imprecise
Pregunta 30
Pregunta
Tonotopy is not only found in the cochlear nucleus or the superior olivary complex but preserved all the way to the primary auditory cortex.
Pregunta 31
Pregunta
Two cues are used for sound localization:
ILD: [blank_start]Interaural level difference[blank_end]
ITD: [blank_start]Interaural time difference[blank_end]
ILD works best for [blank_start]low[blank_end] frequencies
ITD works best for [blank_start]high[blank_end] frequences
Pregunta 32
Pregunta
Which brain regions are important for sound localization?
Respuesta
-
Lateral superior olive
-
Medial superior olive
-
Inferior colliculus
-
Cochlear nucleus
-
Trapezoid body
-
Lateral lemniscus
-
Medial geniculate body
-
Auditory Cortex
Pregunta 33
Pregunta
Neurons in the lateral superior olive (LSO) are most sensitive to [blank_start]high[blank_end] frequencies and [blank_start]mainly[blank_end] responsible for [blank_start]ILD[blank_end] detection.
They integrate [blank_start]excitatory[blank_end] signals from the ipsilateral ear with [blank_start]inhibitory[blank_end] input from the contralateral ear.
The ILD [blank_start]can[blank_end] be analyzed frequency-specific.
Neurons in the medial superior olive (MSO) are most sensitive to [blank_start]low[blank_end] frequencies and responsible for [blank_start]ITD[blank_end] detection.
One model to explain this mechanism is the [blank_start]Jeffress Model[blank_end].
Respuesta
-
high
-
mainly
-
exclusively
-
ILD
-
excitatory
-
inhibitory
-
can
-
cannot
-
low
-
ITD
-
Jeffress Model
-
Held Model
-
Ranvier Model
Pregunta 34
Pregunta
The Jeffress Model
Which neuron will fire if the sound comes from midright?
Pregunta 35
Pregunta
Sound localization:
There is strong evidence for the Jeffress Model for ITD processing in [blank_start]birds[blank_end].
In mammals it is called into question, e.g. by the fact that [blank_start]the MSO receives also inhibitory input[blank_end].
Respuesta
-
birds
-
reptils
-
mammals
-
fish
-
the MSO receives also inhibitory input
-
the LSO receives also inhibitory input
-
the MSO is not capable of summation
-
the LSO is not capable of summation
Pregunta 36
Pregunta
Primary auditory cortex (A1): Brodman [blank_start]41[blank_end] and [blank_start]42[blank_end]
Pregunta 37
Pregunta
Auditory belt areas (including secondary auditory cortex A2) are [blank_start]less[blank_end] precise in their tonotopic organization.
They process [blank_start]combinations of[blank_end] frequencies and temporal sequences of sound.
A2 includes [blank_start]Wernicke's area[blank_end].
Respuesta
-
Wernicke's area
-
Broca's area
-
less
-
also
-
combinations of
-
isolated
Pregunta 38
Pregunta
During development the synaptic density peaks at [blank_start]2-4[blank_end] years.
After that the brain needs to specialize its functions.
In juveniles synaptic potentials have a [blank_start]longer[blank_end] duration and synaptic plasticity is [blank_start]higher[blank_end].
Respuesta
-
2-4
-
1-2
-
4-6
-
longer
-
shorter
-
higher
-
lower
Pregunta 39
Pregunta
Continuous noise input during the critical period of development result in a [blank_start]disrupted[blank_end] tonotopic organization and a degraded [blank_start]frequency response selectivity[blank_end] for neurons in the adult auditory cortex.
Pregunta 40
Pregunta
There are two types of hearing loss:
(1) [blank_start]Conductive[blank_end] hearing loss:
- damage of tympanic membrane
- occlusion of the ear canal
(2) [blank_start]Sensory-neural[blank_end] hearing loss:
- damage to hair cells
- damage to auditory nerve
Respuesta
-
Conductive
-
Sensory-neural
Pregunta 41
Pregunta
The most common cause for hearing loss is
Respuesta
-
a loss of hair cells.
-
damage to the auditory nerve.
-
an occlusion of the mid ear canal.
-
damage to the tympanic membrane.
Pregunta 42
Pregunta
Early hearing loss leads to
(1) [blank_start]Delayed[blank_end] development with synaptic [blank_start]overshoot[blank_end]
(2) [blank_start]Increased[blank_end] elimination of synaptic function
Respuesta
-
Delayed
-
Premature
-
overshoot
-
undershoot
-
Increased
-
Less
Pregunta 43
Pregunta
Patients with a cochlear implant can often get the [blank_start]rhythm[blank_end] of a piece of music but have great difficulty recognizing a [blank_start]melody[blank_end].
Pregunta 44
Pregunta
The problem with bilateral cochlear implants is
(a) [blank_start]their limited range[blank_end] which limits ILD coding
(b) [blank_start]lack of synchronization of the implants[blank_end] which limits ITD coding
Pregunta 45
Pregunta
Components of a cochlear implant:
[blank_start]Microphone[blank_end] --> [blank_start]Sound processor[blank_end] --> [blank_start]Transmitter[blank_end] --> [blank_start]Receiver[blank_end] --> [blank_start]Electrode array[blank_end]
Respuesta
-
Microphone
-
Sound processor
-
Transmitter
-
Receiver
-
Electrode array
Pregunta 46
Pregunta
The ratio of tympanum vs. [blank_start]stapes[blank_end] foot plate is [blank_start]17[blank_end]:1.
The leverage effect is [blank_start]1.3[blank_end].
Respuesta
-
stapes
-
malleus
-
incus
-
17
-
20
-
13
-
1.3
-
3.1
-
1.7
Pregunta 47
Pregunta
The cochlea has [blank_start]2.5[blank_end] coils and its length can vary between [blank_start]28 and 41[blank_end] mm.
Respuesta
-
2.5
-
2
-
3
-
3.5
-
28 and 41
-
30 and 45
-
15 and 38
Pregunta 48
Pregunta
Outer hair cells [blank_start]contract[blank_end] upon depolarization due to their motor protein [blank_start]prestin[blank_end].
Inner hair cells release [blank_start]glutamate[blank_end] upon depolarization.
Respuesta
-
prestin
-
contract
-
glutamate
Pregunta 49
Pregunta
The Organ of Corti is located in the scala [blank_start]media[blank_end] and contains the [blank_start]basilar[blank_end] and the [blank_start]tectorial[blank_end] membrane (alphabetic order). The hair cells are located on the [blank_start]basilar[blank_end] membrane.
Respuesta
-
media
-
basilar
-
tectorial
-
basilar
Pregunta 50
Pregunta
The hair cells are [blank_start]logarithmically[blank_end] distributed on the [blank_start]basilar[blank_end] membrane. More hair cells are located towards the [blank_start]apex[blank_end] where [blank_start]low[blank_end] frequencies are coded.
Respuesta
-
logarithmically
-
exponentially
-
linearly
-
basilar
-
tectorial
-
apex
-
base
-
low
-
high
Pregunta 51
Pregunta
Inner hair cells contain stretch-activated [blank_start]K+[blank_end] channels. Upon depolarization voltage-gated [blank_start]Ca2+[blank_end] channels open and lead to the release of [blank_start]glutamate[blank_end].
Respuesta
-
K+
-
Na+
-
Ca2+
-
Ca2+
-
K+
-
Na+
-
glutamate
-
dopamine
-
glycine
-
GABA
Pregunta 52
Pregunta
Cochlear hair cells have [blank_start]v[blank_end]-shaped [blank_start]tuning[blank_end] curves that describe their best frequencies.
Pregunta 53
Pregunta
Bushy cells improve [blank_start]phase locking[blank_end] compared to the signals that come from the auditory nerve.
Pregunta 54
Pregunta
The Jeffress model contains a [blank_start]delay-line[blank_end] and a [blank_start]coincidence[blank_end] detector.
It is called into question because the medial superior olive receives inhibitory [blank_start]glycine[blank_end] input.
Respuesta
-
glycine
-
delay-line
-
coincidence
Pregunta 55
Pregunta
There are studies about the regeneration of hair cells upon the [blank_start]adenoviral[blank_end] expression of Atoh1/Math1.