The Fed and Fasting State

Descripción

Nutrition and Metabolism Test sobre The Fed and Fasting State, creado por Charlotte Jakes el 03/01/2020.
Charlotte Jakes
Test por Charlotte Jakes, actualizado hace más de 1 año
Charlotte Jakes
Creado por Charlotte Jakes hace más de 4 años
240
0

Resumen del Recurso

Pregunta 1

Pregunta
Which of the following hormones increase blood glucose by inhibiting insulin? Check all that apply.
Respuesta
  • Adrenaline
  • Cortisol
  • Growth hormone
  • Glucagon
  • Secretin

Pregunta 2

Pregunta
Which hormone increases blood glucose by inhibiting insulin over a long period of time?
Respuesta
  • Cortisol
  • Adrenaline
  • Glucagon
  • Growth hormone

Pregunta 3

Pregunta
Which hormone counteracts insulin by stimulating glucose and lipid metabolism but shares insulin's anabolic properties with respect to protein?
Respuesta
  • Growth hormone
  • Adrenaline
  • Cortisol
  • Glucagon

Pregunta 4

Pregunta
Which hormone stimulates insulin secretion after food intake before blood glucose increases?
Respuesta
  • Secretin
  • Cholecystokinin
  • Gastrin
  • Pancreatic peptide

Pregunta 5

Pregunta
Which type of glucose transporters are present on the B cells of the islets of Langerhans?
Respuesta
  • GLUT1
  • GLUT2
  • GLUT3
  • GLUT4

Pregunta 6

Pregunta
Which glucose kinase is present in the B cells of the islets of Langerhans?
Respuesta
  • Glucokinase
  • Hexokinase

Pregunta 7

Pregunta
Fill in the blanks to describe the stimulation of insulin secretion from the pancreatic B cells. 1. The B cells have [blank_start]GLUT2[blank_end] glucose transporters - these have [blank_start]low[blank_end] affinity so glucose only enters these cells at [blank_start]high[blank_end] concentration. 2. [blank_start]Gluco[blank_end]kinase is present in the B cells which has [blank_start]high[blank_end] Km so [blank_start]phosphorylates[blank_end] glucose with [blank_start]low[blank_end] affinity. This initiates [blank_start]glycolysis[blank_end]. 3. [blank_start]ATP[blank_end] from [blank_start]glycolysis[blank_end] inhibits [blank_start]ATP[blank_end]-sensitive [blank_start]K+[blank_end] channels on the membrane. 4. The prevention of [blank_start]K+[blank_end] leakage causes the membrane to become [blank_start]depolarised[blank_end]. 5. [blank_start]Voltage[blank_end]-gated [blank_start]Ca2+[blank_end] channel proteins open. 6. [blank_start]Ca2+[blank_end] enters the cell stimulating [blank_start]vesicular fusion[blank_end] and release of insulin.
Respuesta
  • GLUT2
  • low
  • high
  • Gluco
  • high
  • phosphorylates
  • low
  • glycolysis
  • ATP
  • glycolysis
  • ATP
  • K+
  • K+
  • depolarised
  • Ca2+
  • Voltage
  • Ca2+
  • vesicular fusion

Pregunta 8

Pregunta
What is proinsulin?
Respuesta
  • Commercially synthesised insulin for use in diabetes management
  • Inactive prehormone form of insulin
  • The inactive form of insulin secreted by the pancreas of those with type 2 diabetes
  • Insulin when bound in a vesicle in the pancreatic B cells

Pregunta 9

Pregunta
How do we activate proinsulin?
Respuesta
  • Cleave off the C-peptide
  • Cleave off the B-peptide
  • Hydrolyse the disulfide bridges
  • Substitution of histidine for proline on the a-chain

Pregunta 10

Pregunta
What type of receptor is the insulin receptor?
Respuesta
  • Tyrosine kinase
  • GPCR
  • Free cytosolic
  • Transmembrane channel

Pregunta 11

Pregunta
Which domain are the 2 a-subunits of the insulin receptor found?
Respuesta
  • Extracellular
  • Intracellular

Pregunta 12

Pregunta
Which domain are the 2 b-subunits of the insulin receptor found?
Respuesta
  • Extracellular
  • Intracellular

Pregunta 13

Pregunta
The insulin receptor is described as being catalytic.
Respuesta
  • True
  • False

Pregunta 14

Pregunta
What happens when insulin binds to the insulin receptor?
Respuesta
  • Autophosphorylation of tyrosine residues
  • Autophosphorylation of lysine residues
  • Activation of a G protein
  • Opening of transmembrane channel

Pregunta 15

Pregunta
Fill in the blanks below to describe the activation of protein kinase B by insulin. 1. Insulin binds to its [blank_start]tyrosine[blank_end] receptor. 2. This binding stimulates [blank_start]autophosphorylation[blank_end] of [blank_start]tyrosine[blank_end] residues. 3. This [blank_start]phosphorylation[blank_end] allows [blank_start]phosphorylation[blank_end] of [blank_start]Insulin Receptor Substrate[blank_end] (IRS 1/2). 4. [blank_start]Insulin Receptor Substrate[blank_end] activates [blank_start]P13 kinase[blank_end]. 5. [blank_start]P13 kinase[blank_end] phosphorylates [blank_start]PiP2[blank_end] to [blank_start]PiP3[blank_end] in the cell membrane. 6. [blank_start]PiP3[blank_end] activated [blank_start]PDK1[blank_end]. 7. [blank_start]PDK1[blank_end] activates [blank_start]protein kinase B[blank_end].
Respuesta
  • tyrosine
  • autophosphorylation
  • tyrosine
  • phosphorylation
  • phosphorylation
  • Insulin Receptor Substrate
  • Insulin Receptor Substrate
  • P13 kinase
  • P13 kinase
  • PiP2
  • PiP3
  • PiP3
  • PDK1
  • PDK1
  • protein kinase B

Pregunta 16

Pregunta
Fill in the blanks below to describe how insulin activates glycogen synthesis. 1. When insulin binds to its tyrosine kinase receptor, [blank_start]protein kinase B[blank_end] is activated by a series of [blank_start]phosphorylations[blank_end]. 2. [blank_start]Protein kinase B[blank_end] causes [blank_start]GLUT4[blank_end] channels to be translocated to the membrane via [blank_start]vesicular fusion[blank_end] to encourage glucose uptake. 3. [blank_start]Protein kinase B[blank_end] phosphorylates [blank_start]glycogen synthase kinase[blank_end]. This [blank_start]inactivates[blank_end] glycogen synthase kinase. 4. [blank_start]Glycogen synthase[blank_end] remains unphosphorylated so remains in its [blank_start]active[blank_end] form. 5. Glycogen syntheiss can take place.
Respuesta
  • protein kinase B
  • phosphorylations
  • Protein kinase B
  • GLUT4
  • vesicular fusion
  • Protein kinase B
  • glycogen synthase kinase
  • inactivates
  • Glycogen synthase
  • active

Pregunta 17

Pregunta
The active form of glycogen synthase kinase is...
Respuesta
  • Phosphorylated
  • Not phosphorylated

Pregunta 18

Pregunta
The active form of glycogen synthase is...
Respuesta
  • Phosphorylated
  • Not phosphorylated

Pregunta 19

Pregunta
Fill in the blanks below to describe how insulin inhibits lipolysis. 1. When insulin binds to its [blank_start]tyrosine kinase[blank_end] receptor, [blank_start]protein kinase B[blank_end] is activated by a series of [blank_start]phosphorylations[blank_end]. 2. [blank_start]Protein kinase B[blank_end] phosphorylates [blank_start]phosphodiesterase[blank_end] to activate it. 3. [blank_start]Phosphodiesterase[blank_end] converts [blank_start]cAMP[blank_end] to AMP. 4. [blank_start]Protein kinase A[blank_end] is therefore inhibited and thus [blank_start]hormone sensitive lipase[blank_end] is not activated. 5. Triacylglycerols are not hydrolyses and the triacylglycerol store in adipose tissue is preserved.
Respuesta
  • protein kinase B
  • tyrosine kinase
  • phosphorylations
  • Protein kinase B
  • phosphodiesterase
  • Phosphodiesterase
  • cAMP
  • Protein kinase A
  • hormone sensitive lipase

Pregunta 20

Pregunta
What hormone activates hormone sensitive lipase to cause TAG hydrolysis?
Respuesta
  • Glucagon
  • Insulin
  • Secretin
  • Ghrelin

Pregunta 21

Pregunta
Fill in the blanks below to describe how insulin affects gene expression. 1. Insulin binds to its [blank_start]tyrosine kinase[blank_end] receptor stimulating [blank_start]autophosphorylation[blank_end] of [blank_start]tyrosine[blank_end] residues. 2. This phosphorylation leads to activation of [blank_start]RasGTP[blank_end]. 3. [blank_start]RasGTP[blank_end] activates the protein kinase cascade to phosphorylate first [blank_start]RAF[blank_end], then [blank_start]MEK[blank_end], then [blank_start]ERK[blank_end]. 4. [blank_start]ERK[blank_end] or MAPK activates or inhibits [blank_start]transcription factors[blank_end] leading to gene activation or suppression.
Respuesta
  • tyrosine kinase
  • autophosphorylation
  • tyrosine
  • RasGTP
  • RasGTP
  • RAF
  • MEK
  • ERK
  • ERK
  • transcription factors

Pregunta 22

Pregunta
The brain and erythrocytes will always take up glucose and metabolise it. Why?
Respuesta
  • GLUT3 transporters have high affinity
  • Glucokinase present which has high Km
  • Membranes freely permeable to glucose
  • Insulin directs glucose towards these tissues

Pregunta 23

Pregunta
In excess, how will pyruvate from glycolysis leave the liver?
Respuesta
  • As VLDL
  • As HDL
  • As LDL
  • As chylomicrons

Pregunta 24

Pregunta
Why does muscle and adipose tissue only uptake glucose at very high concentrations?
Respuesta
  • GLUT4 transporters present
  • Hexokinase present
  • Glucokinase present
  • Glycogen synthase present

Pregunta 25

Pregunta
Which biomolecules deposit fatty acids into adipose tissue in the fed state? Select all that apply.
Respuesta
  • Chylomicrons
  • VLDL
  • HDL
  • LDL

Pregunta 26

Pregunta
What are the actions of cortisol?
Respuesta
  • Long term blood glucose regulation
  • Stimulation of amino acid mobilisation from muscle
  • Stimulation of gluconeogenesis
  • Stimulation of TAG release from adipose tissue
  • Activation of glycogen synthase
  • Inhibition of lipoprotein lipase
  • Recruitment of GLUT4 transporters to cell membranes

Pregunta 27

Pregunta
The liver is engaged in gluconeogenesis at all times except during...
Respuesta
  • The fed state
  • The fasting state
  • Prolonged starvation
  • Satiety signalling

Pregunta 28

Pregunta
Why is the glucose kinase in the liver glucokinase, which has low affinity?
Respuesta
  • No competition for glucose with the brain when concentration is low
  • Concentration of glucose in the liver is always high
  • To compete for glucose against the brain when concentration is low
  • Concentration of glucose in the liver is always low

Pregunta 29

Pregunta
During the fed state, acetyl CoA carboxylase is activated to form malonyl CoA. What does malonyl CoA do?
Respuesta
  • Inhibits acyl carnitine transferase to prevent entry of fatty acids into mitochondrion for oxidation
  • Activations acyl carnitine transferase to encourage entry of fatty acids into mitochondrion for oxidation
  • Activates lipoprotein lipase to encourage TAG storage in adipose tissue
  • Activates LCAT to increase cholesterol uptake from peripheral tissues

Pregunta 30

Pregunta
Why does the brain rely on glucose as fuel?
Respuesta
  • Fatty acids cannot cross the blood-brain barrier
  • Fatty acids are broken down in the cerebrospinal fluid
  • Fatty acids are toxic to neurons
  • The neurons have no mitochondria

Pregunta 31

Pregunta
Glucose transport into the brain and erythrocytes is independent of insulin.
Respuesta
  • True
  • False

Pregunta 32

Pregunta
The erythrocytes have no mitochondria.
Respuesta
  • True
  • False

Pregunta 33

Pregunta
When do blood glucose concentrations peak?
Respuesta
  • 1 hour after eating
  • 2 hours after eating
  • 4 hours after eating
  • 30 mins after eating

Pregunta 34

Pregunta
Following a meal, when have blood glucose levels normally returned to normal by?
Respuesta
  • 2 hours
  • 1 hour
  • 4 hours
  • 6 hours

Pregunta 35

Pregunta
Why can't fatty acids be used in gluconeogenesis?
Respuesta
  • Acetyl CoA cannot be converted back to pyruvate - acetyl CoA is an end product of B-oxidation
  • Fatty acids cannot cross the hepatocyte cell membranes
  • It is more efficient to store fatty acids as TAGs in adipose tissue
  • Fatty acids cannot be converted to citrate

Pregunta 36

Pregunta
Which of the following molecules are gluconeogenic substrates?
Respuesta
  • Lactate
  • Glycerol
  • Glucogenic amino acids
  • Ketogenic amino acids
  • Fatty acids
  • Malonyl CoA

Pregunta 37

Pregunta
Ketone bodies consist of two molecules of what bonded together?
Respuesta
  • Acetyl CoA
  • Malonyl CoA
  • Carbon dioxide
  • Lactate

Pregunta 38

Pregunta
What is the purpose of the ketone bodies?
Respuesta
  • Provide a source of acetyl CoA to the muscles
  • Provide a source of acetyl CoA to the brain
  • Buffer system in the blood
  • Activate glycogen phosphorylase

Pregunta 39

Pregunta
In the fasting state, glucagon activates [blank_start]glycogen phosphorylase kinase[blank_end]. Thus, [blank_start]glycogen phosphorylase[blank_end] is phosphorylated and put into its [blank_start]active[blank_end] state. This means [blank_start]glycogen[blank_end] is phosphorylated and [blank_start]glucose[blank_end] can enter the blood.
Respuesta
  • glycogen phosphorylase kinase
  • glycogen phosphorylase
  • active
  • glycogen
  • glucose

Pregunta 40

Pregunta
Where is lactate sourced from for gluconeogenesis?
Respuesta
  • Erythrocytes
  • Brain
  • Adipose tissue
  • Kidney

Pregunta 41

Pregunta
Why do the erythrocytes produce lactate?
Respuesta
  • Can only perform anaerobic respiration
  • Can only perform aerobic respiration
  • Haem breakdown
  • Byproduct of oxyhaemoglobin formation

Pregunta 42

Pregunta
When does acetyl CoA form ketone bodies?
Respuesta
  • When it exceeds the capacity of the TCA cycle
  • When insulin activates hepatocytes
  • When ATP concentration is high in the hepatocytes
  • During the fed state

Pregunta 43

Pregunta
Why do ketone bodies stimulate insulin secretion?
Respuesta
  • To prevent muscle breakdown
  • To prevent fatty acid oxidation
  • To prevent urea toxicity
  • To prevent hepatocyte death

Pregunta 44

Pregunta
The brain can use ketone bodies in metabolism.
Respuesta
  • True
  • False

Pregunta 45

Pregunta
When does urea excretion and thus protein breakdown peak during starvation?
Respuesta
  • After 12 hours
  • 1 week
  • 2 weeks
  • After 48 hours

Pregunta 46

Pregunta
Why does urea excretion and thus protein breakdown decrease over time?
Respuesta
  • Ketone bodies stimulate insulin secretion
  • Ketone bodies stimulate glucagon secretion
  • After a certain period there is no mobilisable protein left
  • After a certain period urea transporters in the nephron are saturated

Pregunta 47

Pregunta
Why do the muscle begin to utilise fatty acids for energy as starvation progresses?
Respuesta
  • To increase availability of ketone bodies to brain
  • To reduce urea toxicity
  • To increase availability of amino acids to brain
  • To prevent kidney damage

Pregunta 48

Pregunta
For how long can a human survive without food?
Respuesta
  • 40 days
  • 20 days
  • 80 days
  • 7 days

Pregunta 49

Pregunta
Fill in the blanks below to describe type 1 diabetes. Type 1 diabetes is caused by the [blank_start]autoimmune[blank_end] destruction of [blank_start]B[blank_end] cells in the [blank_start]pancreas[blank_end]. It often has an [blank_start]early[blank_end] onset. Symptoms include polyuria, polydipsea, [blank_start]polyphagia[blank_end] (excessive appetite), fatigue and weakness as well as weight loss and muscle wasting. It requires treatment with exogenous [blank_start]insulin[blank_end] whereby the dosage is matched with [blank_start]carbohydrate intake[blank_end].
Respuesta
  • autoimmune
  • B
  • pancreas
  • early
  • polyphagia
  • insulin
  • carbohydrate intake

Pregunta 50

Pregunta
Which of these indicate type 1 diabetes?
Respuesta
  • Hyperglycaemia and ketoacidosis
  • Hyperglycaemia only
  • Ketoacidosis only
  • Hypoglycaemia and ketoacidosis

Pregunta 51

Pregunta
Fill in the blanks below to describe Type 2 diabetes. Type 2 diabetes is caused by insulin [blank_start]resistance[blank_end]. Is is usually [blank_start]later[blank_end] onset than type 1. Type 2 diabetes can be treated with dietary changes and oral [blank_start]hypoglycaemic[blank_end] agents.
Respuesta
  • resistance
  • later
  • hypoglycaemic

Pregunta 52

Pregunta
What do biguanides do in the treatment of Type II diabetes?
Respuesta
  • Increase recruitment of GLUT4 to increase glucose uptake
  • Reduce recruitment of GLUT4 to reduce glucose uptake
  • Act on B cells to improve insulin secretion
  • Destroy ketone bodies in the blood

Pregunta 53

Pregunta
What do sulphonylureas do in the treatment of Type 2 diabetes?
Respuesta
  • Act on B cells to improve insulin secretion
  • Destroy ketone bodies
  • Increase recruitment of GLUT4 to encourage glucose uptake
  • Reduce recruitment of GLUT4 to reduce glucose uptake

Pregunta 54

Pregunta
Which hormone acts unopposed in diabetes mellitus?
Respuesta
  • Glucagon
  • Insulin
  • Adrenaline
  • Cortisol

Pregunta 55

Pregunta
In a healthy individual, [blank_start]ketone bodies[blank_end] stimulate [blank_start]insulin[blank_end] release to limit muscle protein breakdown. In diabetics, this cannot occur. Thus, protein is broken down in an uncontrolled matter, [blank_start]gluconeogenesis[blank_end] is not controlled, fat breakdown is not controlled and [blank_start]ketone body[blank_end] production is not controlled. Glucose and [blank_start]ketone bodies[blank_end] may be present in the urine.
Respuesta
  • insulin
  • ketone bodies
  • gluconeogenesis
  • ketone body
  • ketone bodies

Pregunta 56

Pregunta
Drag and drop the correct pathologies to name some of the complications of diabetes mellitus. [blank_start]Microangiopathy[blank_end] - disease of the capillaries causing thickening of the wlals [blank_start]Retinopathy[blank_end] - damage to the retina affecting vision [blank_start]Nephropathy[blank_end] - damage to the kidneys [blank_start]Neuropathy[blank_end] - results in impotence, foot ulcers etc
Respuesta
  • Microangiopathy
  • Retinopathy
  • Nephropathy
  • Neuropathy

Pregunta 57

Pregunta
To be diagnosed with metabolic syndrome, patients must have any 1 of: [blank_start]high[blank_end] fasting glucose, [blank_start]insulin[blank_end] resistance or [blank_start]type 2[blank_end] diabetes. Patients must also have any 2 of [blank_start]hyper[blank_end]tension, [blank_start]dyslipidemia[blank_end] (abnormal lipid content in blood), [blank_start]central[blank_end] obesity (fat buildup around the abdomen) or microalbuminuria
Respuesta
  • high
  • insulin
  • type 2
  • hyper
  • dyslipidemia
  • central
Mostrar resumen completo Ocultar resumen completo

Similar

Amino Acid Metabolism
Charlotte Jakes
India's foreign policy
Husein Katwarawala
Gluconeogenesis
Charlotte Jakes
Macronutrients and Protein-Energy Malnutrition
Charlotte Jakes
Vitamins
Charlotte Jakes
Anaerobic Metabolism - The Glycolysis Pathway
Charlotte Jakes
Anaerobic Metabolism - the TCA Cycle
Charlotte Jakes
Glycogen Synthesis and Regulation
Charlotte Jakes
Overview of Metabolism
Charlotte Jakes
Nutrition and Health
Charlotte Jakes
Lipid Synthesis and Transport
Charlotte Jakes