Lista Sobre Integral de Linha

Descripción

Nessa lista iremos trabalhar exercícios sobre integral de linha.
BOTE FÉ NA MATEMÁTICA
Test por BOTE FÉ NA MATEMÁTICA, actualizado hace más de 1 año
BOTE FÉ NA MATEMÁTICA
Creado por BOTE FÉ NA MATEMÁTICA hace alrededor de 2 años
446
0

Resumen del Recurso

Pregunta 1

Pregunta
Calcule a integral de linha \(\int_{C}yds\), onde \(C=(t^2, t)\), \(0\leq t \leq 2\).
Respuesta
  • \(\frac{1}{12}[(17)^{3/2} - 1]\)
  • \(\frac{1}{12}[(1 - 17)^{3/2} ]\)
  • \(\frac{1}{3}[(17)^{3/2} - 1]\)
  • \(\frac{17}{3}\)

Pregunta 2

Pregunta
Calcule a integral de Linha \(\int_{\gamma}xy^4ds\), onde \(\gamma\) é a parte do círculo \(x^2+y^2=4\) em que \(x\geq 0\).
Respuesta
  • \(\frac{128}{5}\)
  • \(\frac{64}{5}\)
  • 128
  • \(\frac{128}{3}\)

Pregunta 3

Pregunta
Calcule a integral de linha \(\int_{\gamma}xydx + (x-y)dy\), \(\gamma\) consiste nos segmentos de reta de (0, 0) a (2, 0) e de (2, 0) a (3, 2).
Respuesta
  • \(\frac{17}{3}\)
  • \(\frac{25}{3}\)
  • 25
  • 3

Pregunta 4

Pregunta
Calcular o trabalho realizado pela força \(\vec{F}(x, y) = (\frac{1}{x+2}, \frac{1}{y+3})\) para deslocar uma partícula em linha reta do ponto P(3, 4) até Q(-1, 0).
Respuesta
  • \(\ln 3 - \ln 5 - \ln 7\)
  • \(\ln 3 - \ln 5 + \ln 7\)
  • \(\ln 3 + \ln 5 - \ln 7\)
  • \(-\ln 3 - \ln 5 - \ln 7\)

Pregunta 5

Pregunta
Seja \(F(x, y, z) = y^2\vec{i} +(2xy + e^{3z})\vec{j} + 3ye^{3z}\vec{k}\). Marque a alternativa que fornece um campo potencial para \(F\).
Respuesta
  • \(\varphi(x, y, z) = xy^2 + ye^{3z}\)
  • \(\varphi(x, y, z) = xy + ye^{3z}\)
  • \(\varphi(x, y, z) = xy^2 + ye^{z}\)
  • \(\varphi(x, y, z) = xy^2 + ye^{3z} +y\)

Pregunta 6

Pregunta
Dado o campo vetorial \(F(x, y) = (3+2xy, x^2 - 3y^2)\), marque a alternativa que fornece um campo potencial para \(F\) e o valor da integral de linha \(I = \int_{\gamma}F.d\gamma\), onde \(\gamma(t) = (e^tsen(t), e^tcos(t))\), \(t\in [0, \pi]\).
Respuesta
  • \(\varphi(x, y)=3x + x^2y - y^3\) e \(I=e^{3\pi}+1\)
  • \(\varphi(x, y)=x^2y - y^3\) e \(I=e^{3\pi}+1\)
  • \(\varphi(x, y)=3x + x^2y - y^3\) e \(I=e^{3\pi}\)
  • \(\varphi(x, y)=x^2y - y^3\) e \(I=e^{3\pi}\)

Pregunta 7

Pregunta
Determine o trabalho realizado pelo campo vetorial de força \(F(x, y) = (2xsen(y), x^2cos(y) - 3y^2)\) movendo um objeto de P(-1, 0) a Q(5,1).
Respuesta
  • \(25sen(1) - 2\)
  • \(25sen(1) \)
  • 23
  • \(25sen(1) - 1\)

Pregunta 8

Pregunta
Calcule \(\int_{\gamma}x^4dx +xydy\), onde \(\gamma\) é a curva triangular construída pelos segmentos de reta de (0,0) a (1,0), de (1,0) a (0,1) e de (0,1) a (0,0).
Respuesta
  • \(\frac{1}{6}\)
  • \(-\frac{1}{6}\)
  • \(\frac{1}{3}\)
  • \(-\frac{1}{3}\)

Pregunta 9

Pregunta
Seja \(F(x, y, z) = xz\vec{i} + xyz\vec{j} - y^2\vec{k}\), determine o rotacional de F.
Respuesta
  • \(rotF = -y(2+x)\vec{i} + x\vec{j} + yz\vec{k}\)
  • \(rotF = -y(2+x)\vec{i} + x\vec{j} + z\vec{k}\)
  • \(rotF = (2+x)\vec{i} + x\vec{j} + yz\vec{k}\)
  • \(rotF = (2+x)\vec{i} + x\vec{j} + y\vec{k}\)

Pregunta 10

Pregunta
Todo campo vetorial em que \(rotF = \vec{0}\) é um campo conservativo.
Respuesta
  • True
  • False

Pregunta 11

Pregunta
Mantendo os pontos finais e iniciais, a integral de linha de um campo vetorial sempre fornecerá um valor diferente quando a curva considerada for alterada.
Respuesta
  • True
  • False
Mostrar resumen completo Ocultar resumen completo

Similar

Lista 1: Integral Dupla Sobre Retângulo
BOTE FÉ NA MATEMÁTICA
Lista 1: Integral Dupla Sobre Retângulo
jonatas Vieira
Lista 1: Integral Dupla Sobre Retângulo
jonatas Vieira
20) Negative personality
John Goalkeeper
Animales y sus Características
Diego Santos
GED en Español: Todo lo que necesitas saber
Diego Santos
SELECTIVIDAD: Metas de Estudio SMART
maya velasquez
Características de la literatura del Siglo XVIII
maya velasquez
TIPOS DE MUESTREO
Gutierrez J Roxana
FGM-5. ESTRUCTURA BÁSICA DEL MINISTERIO DE DEFENSA Y DEL EJÉRCITO DE TIERRA (I)
antonio del valle
Evaluación teórica final de elabora la matriz de offset
Alma Fer