Finite Element Method for problems in Physics

Descripción

My personal Summary from the Coursera Course.
Deiwid decker
Diapositivas por Deiwid decker, actualizado hace más de 1 año
Deiwid decker
Creado por Deiwid decker hace casi 6 años
192
0

Resumen del Recurso

Diapositiva 1

    Linear Elliptic Differential equations in 1D
    1D Heat Conduction at steady state 1D Mass Diffusion at steady state 1D Elasticity at steady state.
    Pie de foto: : 1D Heat Conduction

Diapositiva 2

    ug = Specified displacement at x = L. t = Specified traction at x = L. f = Distributed body force.   Find  \(u(x) : (0,L) ---> R\) given \(u(0)= u_0,u_g,t\) the constitutive relation \(\sigma = E u_,x\) such that \[\frac{d\sigma}{dx}+f=0\]. with the boundary conditions /( Diff Eq \) , \(u(0)=u_0 \), and either \(u(L)=u_g\) or \(\sigma(L) = t \)

Diapositiva 3

    Boundary Conditions
    \(u(0)=U_0 \), \(u(L) = u_g \)  - Dirichlet Boundary Conditions - On the primal field  \(\sigma(L) = t\) - Neumann Boundary Conditions - On the derivative of the primal field. For Elasticity : Dirichlet - Displacement                           Neumann - traction   *( We do not consider neumann at o and L. This would assume that we have a dynamic conditions such as a bar flying.)   ( We do not have just one answer for this type of problem. (Proof on mooc or notebook.)) Neumann B.C alone can be specified for the time dependent elasticity problem \(HyperbolicPartialDifferentialEquation\)

Diapositiva 4

    The differential Equation
    \[ \frac{d\sigma}{dx} +f(x) = 0 \] \((0,L) \) open interval excluding 0 and L because we have boundary conditions on them. 

Diapositiva 5

    Constitutive Relation
    \[ \sigma = Eu,_x \] Tell about the constitution of the domain  \(\sigma\) = Stress \( E\) = Young Modulus \(u,_x \) = strain -Linearized Elasticity    
Mostrar resumen completo Ocultar resumen completo

Similar

Teoría Básica de contactos Elementos Finitos FEM
Juang G Diosa
FEA-Mindmap Mooc
Deiwid decker
EVALUACIÓN DE DIBUJO TECNICO
Jorge Arevalo
Fichas de Competencias Comunicativas del Español: Estructura de la Lengua
Raúl Fox
Oftalmología - ENARM
Emilio Alonsooo
Vocabulario Inglés - Tema 2
maya velasquez
Expresiones en inglés
maya velasquez
Nietzsche: Estudio sobre la Ética
maya velasquez
Primera Guerra Mundial
Diego Santos
Conceptos Básicos de Informática
Diana Salgado
10 formidables estrategias de marketing para pequeñas empresas
Laura -