Mathe Definitionen

Descripción

Kurztest Mathematik Fichas sobre Mathe Definitionen, creado por nadescha See el 11/10/2017.
nadescha See
Fichas por nadescha See, actualizado hace más de 1 año
nadescha See
Creado por nadescha See hace alrededor de 7 años
8
1

Resumen del Recurso

Pregunta Respuesta
3 binomische Formeln (a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2 (a+b)(a-b) = a2-b2 
A∩B Schnittmenge Alle Elemente, die sowohl zu A als auch zu B gehören.
A∪B Vereinigungsmenge Alle Elemente die mindestens zu einer der beiden Mengen A und B gehören.
A/B Restmenge Alle Elemente die zu A gehören aber nicht zu B.
Satz des Phytagoras Bei einem rechtwinkliges Dreieck, bei dem die anliegenden Seiten am rechten Winkel Kathete heissen und die gegenüberliegende Seite Hypothenuse heisst, gilt: Kathete^2+Kathete^2=Hypothenuse^2
Kathetensatz In jedem rechtwinkligen Dreieck ist das Quadrat jeder Kathete gleich dem Produkt von anliegendem Hypotenusenabschnitt und ganzer Hypotenuse.
Höhensatz Höhe2= Hypotenusenabschnitt* Hypotenusenabschnitt    h2 = p * q
Aussage Es ist eine Behauptung die entweder wahr oder falsch ist.
Beweis Ein Beweis ist eine als gültiger Schluss akzeptierte Folgerung der Wahrheit einer Aussage aus der Wahrheit anderer Aussagen. Erst durch den Beweis wird die Aussage zum Satz. Eine noch unbewiesene Behauptung wird als Vermutung bezeichnet. Der Beweis macht dann die Vermutung zum Satz.
Axiom Ist eine Theorie die ohne Beweis als richtige angenommen wird.
Definition Ist eine Begrifferklärung mit Grundbegriffen oder bereits erklärten Begriffen.
A ist hinreichend für B => Wenn A gilt, gilt auch B
A ist notwendig für B <= Wenn B gilt, gilt auch A
A ist äquivalent zu B <=> Wenn A gilt, gilt auch B Wenn B gilt, gilt auch A
Termumformung Es ist eine algebraische Umformung, bei welcher der Wert des Terms sich nicht ändert.
ax(2+b)=2a+ab ausmultiplizieren
2a+ab=ax(2+b) ausklammern
Gleichung Es ist eine Behauptung linke Seite=rechte Seite bei welcher die unbekannte x vorkommt.
Lösung einer Gleichung Das Element aus der Grundmenge, für welches die Gleichung eine wahre Aussage ist.
Lösungsmenge einer Gleichung Alle Lösungen einer Gleichung zusammengefasst nennt man Lösungsmenge einer Gleichung. (l)
Äquivalenzumformung Es ist eine Umformung nach der die Gleichung immer noch die gleichen Lösungen besitzt.
Verlustumformungen Es ist eine Umformung, nach der die Gleichung mindestens eine Lösung nicht mehr besitzt.
Gewinnumformung Es ist eine Umformung, nach der die Gleichung mindestens eine Lösung zusätzlich erhält.
Funktion Es ist eine Zuordnung, bei welcher jedem Element(x-Wert) aus der Grundmenge genau einen Wert(y-Wert) zugeordnet wird.
Proportionale Funktion Eine Funktion f heisst proportional, wenn sie sich durch ein festes m Element R durch die Zuordnungsgleichung f(x) = m*x darstellen lässt.
lineare Funktion Eine Funktion f heisst linear, wenn sie sich für ein festes m∈ℝ und ein festes b∈ℝ durch die Zuordnungsgleichung f(x)=m*x+b darstellen lässt.
Steigung Wert der (bei gleicher Wachstumsrate) zum Funktionswert hinzuaddiert wird, wenn das Argument um 1 vergrössert wird.
y-Achsenabschnitt Der y-Achsenabschnitt ist der Wert bei dem der Funtionsgraph die Y-Achse schneidet.
Steigungsdreieck Rechtwinkliges Dreieck mit den Katheten parallel zu den Koordinatenachsen und den zwei Endpunkten der Hypotenuse auf dem Graphen.
Nullstellen Argument, für welches die Funktion den Wert 0 annimmt.
Steigung berechnen einer linearen Funktion m=(y2-y1)/(x2-x1)
Inversionsgesetz Multipliziert oder dividiert man auf beiden Seiten einer (Un)gleichung mit demselben Term negativen Wertes, so ist das Vergleichszeichen umzudrehen.
System Zwei oder mehr Bedingungen die alle gleichzeitig eintreffen müssen, fassen wir in einem "System" zusammen.
Lösung des System Eine Lösung eines Systems ist ein Element der Grundmenge, das alle Bedingungen des Systems erfüllt.
Anleitung Einsetzungsverfahren 1 Eine Anfangsgleichung nach einer Variablen auflösen 2 Das gewonnene Resultat in die andere Gleichung einsetzen 3 Auflösen nach der verbleibenden Variablen 4 Resultat einsetzen in das Ergebnis von Schritt 1; ausrechnen
Anleitung Gleichsetzungsverfahren 1. Beide Gleichungen nach der selben Variablen auflösen 2. Gewonnene Resultate gleichsetzen 3. Die Gleichung auflösen nach der verbliebenen Variablen 4. Resultat einsetzen in ein Ergebnis von Schritt 1
1. Strahlensatz Werden 2 von einem Punkt S ausgehende Strahlen s1, s2 von 2 Parallelen p1 p2 geschnitten, dann gilt: SA:AB=SC:CD
Mostrar resumen completo Ocultar resumen completo

Similar

Mathe Quiz
JohannesK
Statistik Theorie
Clara Vanessa
Mathe Themen Abitur 2016
henrythegeek
Mathe Themen
barbara91
Stochastik
barbara91
Vektorendefinition
Sinan 2000
Funktionen Einführung und Geradenfunktionen
Tahir Celikkol
Stochastik
elouasdi98
Themen der Vektorrechnung
Paula Raithel
Geometrie
Tahir Celikkol
Grundlagen der Stochastik - Zusammenfassung
Flo Rian