Fichas de conceptos básicos de matemáticas

Descripción

Conceptos básicos de matemáticas y expresiones algebraicas
ALEXIA SILVA VILLARREAL
Fichas por ALEXIA SILVA VILLARREAL , actualizado hace más de 1 año
ALEXIA SILVA VILLARREAL
Creado por ALEXIA SILVA VILLARREAL hace alrededor de 1 año
10
0

Resumen del Recurso

Pregunta Respuesta
Suma de expresiones algebraicas Para sumar expresiones algebraicas, primero se deben agrupar los términos semejantes. Una vez así se suman los números desoldo de los términos semejantes.
Términos semejantes Los términos semejantes son aquellos que tienen la misma literal y el mismo grado.
Resta de expresiones algebraicas Paso 1 Primero hay que escribir la expresión que se da al inicio después un signo de menos y entre paréntesis la expresión que se va a restar.
Resta de expresiones algebraicas Paso 2 El signo de resta antes de los paréntesis indica qué hay que cambiar todos los signos dentro de estos por el opuesto.
Resta de expresiones algebraicas Paso 3 Por último hay que agrupar los términos semejantes y reducir la expresión.
Operaciones con exponentes fraccionarios y radical El exponente fraccionario en realidad es igual o se refiere a un radical, donde el denominador es el índice del radical y el numerador es el exponente del radicando.
Operaciones con exponentes fraccionarios y radical Para resolver o simplificar un radical, lo convertimos a exponente fraccionario y este se resuelve con una división.
Multiplicación de polinomio Se tienen que multiplicar cada uno de los monomios de uno de los polinomios por todos los monomios del otro polinomio (junto con los signos). Al final se simplifican los términos semejantes.
Productos notables Producto = multiplicación Notable = su frecuencia Son operaciones (multiplicaciones) de expresiones algebraicas especiales que sobresalen más.
Tipos de productos notables 1. Binomio al cuadro: es el cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo. 2. Suma por diferencia: igual a diferencia de cuadrados.
Tipos de productos notables 3. Un binomio al cubo: es el cubo del primero más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.
Tipos de productos notables 4. Trinomio al cuadrado: elcuadrado del primero, más el cuadrado del segundo, más el cuadrado del tercero, más el doble producto del primero por el segundo, más el doble producto del primero por el tercero, más el doble producto del segundo por el tercero.
Tipos de productos notables 5. Suma de cubos: Se factoriza, es decir, las escribiremos como el producto de otras dos expresiones.
Tipos de productos notables 6. Diferencia de cubos: se descompone en dos factores, el primero es la diferencia de sus raíces cúbicas, y el segundo es el cuadrado de la primera raíz más el producto de ambas raíces mas el cuadrado de la segunda raíz..
Tipos de productos notables 7. Desarrollo del producto de dos binomios con término común.
División de polinomios entre monomios Representado en forma de fracción se realiza una separación para dividir cada uno de los términos del polinomio por el monomio. Se dividen los monomios y los exponentes se restan.
División de polinomios entre polinomios Se deben ordenar los términos de mayo a menor exponente. Se divide el primer monomio del dividendo por el primer monomio del divisor. El resultado sepone en el cociente. Se multiplica el cociente por el divisor y el producto obtenido se resta del dividendo. Se baja el término siguiente, y se divide, el primer monomio del dividendo por el primer monomio del divisor y se coloca en el cociente. Se multiptica por el divisor y el prodocto obtenido se resta del dividendo. Se baja el ultimo término, y se divide el primer monomio del dividendo por el primer monomio del divisor y se coloca en el cociente. Se multiplica 6 por el divisor y el producto obtenido se resta del dividendos
Factorizacioón Es la técnica que consiste en la descomposición en factores de una expresión algebraica (que puede ser un número, una suma o resta, una matriz, un polinomio, etc.) en forma de producto.
Tipos de factorización En números primos. Factores comunes Binomial de un trinomio cuadrado De un trinomio cuadrado perfecto De una ecuación cuadrática por agrupamiento De ecuación cuadrática por ensayo y error. De cuatro términos por agrupamiento Factorización de binomios
Operaciones con expresiones racionales Una expresión racional es simplemente un cociente de dos polinomios. En otras palabras, es una fracción cuyo numerador y denominador son polinomios. Se puede sumar y restar expresiones racionale.s: Para sumar o restar dos fracciones numéricas con el mismo denominador, simplemente sumamos o restamos los numeradores, y escribimos el resultado sobre el denominador común.
Referencias
Mostrar resumen completo Ocultar resumen completo

Similar

Test de Funciones
José William Montes Ocampo
Primera Evaluación de Trigonometria
José William Montes Ocampo
Prueba de Funciones
José William Montes Ocampo
Evaluación de Limites
José William Montes Ocampo
Interés Simple
Sofía Valdés
Taller de Relaciones y Funciones
José William Montes Ocampo
Taller de Funciones Vectoriales
José William Montes Ocampo
Números Complejos Juan Francisco G.
Juanfra Guderian
Mapa de Ecuaciones Cuadráticas
Humgry Doggo
Propiedades de números reales
roselepad
Sistema de numeración decimal
Toño Martínez Terán