Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )

Descripción

Logistic Regresion Models
karlagape17
Mapa Mental por karlagape17, actualizado hace más de 1 año
karlagape17
Creado por karlagape17 hace más de 9 años
22
0

Resumen del Recurso

Logistic Regression Model (Applied Logistics Regression (2013) Hosmer David )
  1. The Multiple Logistic Regression Model
    1. INTRODUCTION
      1. ability to handle many variables
      2. MODEL
        1. TESTING THE MODEL
          1. univariable Wald test statistics
        2. Simple
          1. INTRODUCTION
            1. outcome variable is discrete, binary or dichotomous.
              1. Example 1 Excel-Star
                1. Follow Logistic distribution
                  1. logistic regression model
                    1. Summary:
                      1. 1. The model for the conditional mean of the regression equation must be bounded between zero and one. 2. The binomial, not the normal, distribution describes the distribution of the errors and is the statistical distribution on which the analysisis based
                    2. FITTING THE LOGISTIC REGRESSION MODEL
                      1. maximum likelihood.
                        1. the method yields values for the unknown parameters that maximize the probability of obtaining the observed set of data. In order to apply this method we must first construct a function, called the likelihood function
                          1. The maximum likelihood estimators of the parameters are the values that maximize this function
                      2. TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS
                        1. The statistic D is called the deviance, and for logistic regression, Is the same as the sum-of-squares in linear regression
                        2. CONFIDENCE INTERVAL ESTIMATION
                        3. Multinomial and Ordinal Outcomes
                          1. nominal with more than two levels
                            1. discrete choice model
                              1. The variable has three levels A,B or C is chosen.Possible covariates might include gender,age,income,family size,and others.
                                1. multinomial ,polychotomous, or polytomous logistic regression
                              2. Model
                                1. p covariates and a constant term, denoted by the vector x,of length p+1,where x0=1.
                              3. Interpretation of the Fitted Logistic Regression Model
                                Mostrar resumen completo Ocultar resumen completo

                                Similar

                                Matemáticas: Operaciones Basicas
                                slipknothacker
                                SIMULACRO DE EXAMEN DE CONOCIMIENTOS PNP- MODULO: CONSTITUCIÓN POLÍTICA DEL PERÚ
                                Jesús Tiburcio
                                EL SIGLO XVIII: LA CRISIS DEL ANTIGUO RÉGIMEN
                                evaruizher
                                METABOLISMO DE LOS LÍPIDOS
                                Diego Santos
                                Justificación de Nietzsche
                                maya velasquez
                                Disoluciones Químicas
                                maya velasquez
                                Repaso de Revalida Enfermeria 2015
                                Tomas Maun
                                Elementos de la Inteligencia Emocional
                                Fernando Durán Z.
                                Guía Rápida para Comenzar a Usar GoConqr
                                Diego Santos
                                2.2 LOS MEDIOS DE TELECOMUNICACIONES I
                                antonio del valle
                                EL DIÁLOGO
                                Eva Sánchez