Procesamiento de Señales con wavelets

Descripción

Como se ha indicado por el principio de incertidumbre de Heisenberg, el producto de los soportes temporales y espectrales \ sigma_t ^ 2 \ sigma_ \ omega ^ 2 \ ge 01.04para cualquier átomo de tiempo-frecuencia dada, o celda de resolución. Las ventanas STFT restringen las células resolución a soportes espectrales y temporales que \ Delta_Tdetermine.
DAVIER MALDONADO
Mapa Mental por DAVIER MALDONADO, actualizado hace más de 1 año
DAVIER MALDONADO
Creado por DAVIER MALDONADO hace alrededor de 9 años
92
0

Resumen del Recurso

Procesamiento de Señales con wavelets
  1. Procesamiento
    1. Transformadas wavelet continua
      1. En transformadas wavelet continua, una señal dada de energía finita se proyecta en una familia continua de bandas de frecuencias (o subespacios similares de la L p espacio función L 2 (R))...
        1. Las bandas de frecuencia o subespacios (sub-bandas) se escalan versiones de un subespacio a escala 1. Este subespacio a su vez es en la mayoría de situaciones generadas por los cambios de un solo generador de función ψ en L 2 (R), la wavelet madre. Para el ejemplo de la escala de una frecuencia de banda [1, 2] Esta función es:
          1. Con el (normalizado) función sinc. Eso, Meyer, y otros dos ejemplos de wavelets madre son:
        2. Las comparaciones con transformada de Fourier (en tiempo continuo)
          1. La transformada wavelet a menudo se compara con la transformada de Fourier, en la que las señales se representan como una suma de sinusoides. De hecho, la transformada de Fourier se puede ver como un caso especial de la transformada wavelet continua con la elección de la wavelet
            1. La principal diferencia es que, en general, wavelets se localizan tanto en el tiempo y la frecuencia, mientras que el estándar de transformada de Fourier solamente se localiza en frecuencia. La corta duración de transformada de Fourier (STFT) es similar a la transformada wavelet, ya que también es el tiempo y la frecuencia localizada, pero hay problemas con la frecuencia / tiempo de resolución trade-off. En particular, en el supuesto de una región ventana rectangular, se puede pensar en la STFT como transformar con un núcleo ligeramente diferente
              1. Como se ha indicado por el principio de incertidumbre de Heisenberg, el producto de los soportes temporales y espectrales para cualquier átomo de tiempo-frecuencia dada, o celda de resolución. Las ventanas STFT restringen las células resolución a soportes espectrales y temporales que \ Delta_T determine.
        3. Transformadas wavelet discreta
          1. Es computacionalmente imposible analizar una señal utilizando todos los coeficientes wavelet, así que uno puede preguntarse si es suficiente para recoger un subgrupo discreto de la halfplane superior para poder reconstruir una señal de los correspondientes coeficientes wavelet
            1. En cualquier wavelet discretizado transformar, sólo hay un número finito de coeficientes wavelet para cada región rectangular delimitada en el semiplano superior. Sin embargo, cada coeficiente requiere la evaluación de una integral. En situaciones especiales esta complejidad numérica se puede evitar si las ondas desplazados y escalados forman un análisis multiresolución. Esto significa que no tiene que existir una función auxiliar, la wavelet padre φ en L 2 (R), y que una es un número entero. Una opción típica es una = 2 y b El más famoso par de wavelets padre y madre = 1.
        Mostrar resumen completo Ocultar resumen completo

        Similar

        Todos los Países del Mundo y sus Capitales
        maya velasquez
        Las Matemáticas
        maya velasquez
        Mapas mentales con ExamTime
        maya velasquez
        Test de Matemáticas
        Diego Santos
        Inglés - Verbos Compuestos I (Phrasal Verbs)
        Diego Santos
        Exani II - Estructura
        Gastón Amato
        Consecuencias de la guerra civil
        ignaciobll
        Fracciones y porcentajes
        Esperanza Gesteira
        Adjectives and Adverbs (regular and irregular examples)
        angel.cardenas.r
        Fomentando la Creatividad en el Aula
        Diego Santos
        PLAN DE ASESORÍA TÉCNICA PEDAGOGICA EN VERACRUZ
        DIRECCIÓN GENERAL DE EDUCACIÓN FISICA FEDERALIZADA