null
US
Iniciar Sesión
Regístrate Gratis
Registro
Hemos detectado que no tienes habilitado Javascript en tu navegador. La naturaleza dinámica de nuestro sitio requiere que Javascript esté habilitado para un funcionamiento adecuado. Por favor lee nuestros
términos y condiciones
para más información.
Siguiente
Copiar y Editar
¡Debes iniciar sesión para completar esta acción!
Regístrate gratis
734322
Statistical Physics
Descripción
Graduação Thermodynamics & Stat. Physics Mapa Mental sobre Statistical Physics, creado por eg612 el 08/04/2014.
Sin etiquetas
thermodynamics & stat. physics
thermodynamics & stat. physics
graduação
Mapa Mental por
eg612
, actualizado hace más de 1 año
Más
Menos
Creado por
eg612
hace más de 10 años
214
1
0
Resumen del Recurso
Statistical Physics
Definitions
Macrostate: description of a thermodynamic system using macroscopic variables
Microstate: full description of system
Many microstates can correspond to the same macrostate
Fundamental postulate of Stat. Physics: every microstate has the same probability
If 2 systems A & B are merged:
Total entropy is extensive => S_AB = S_A + S_B
=> Boltzmann's Entropy: S = k_b ln(omega)
Total number of microstates of AB
Distinguishable particles: solids
Isolated: microcanonical ensemble
Statistical weight
Need to maximise entropy S with constraints: ∑E_j*n_j=U and ∑n_j=N
Lagrange multipliers
Define partition function z = ∑e^(-βE_j)
Specify α from number of particles and partition function
Add dQ and equate to dU to find β= 1/k_B*T
n_j = (N/z)*e^(-E_j/(k_B*T))
Degeneracy g_j:
g_j multiplies Boltzmann factor
Closed: Canonical ensemble
Nota:
Heat baths: heat can leave or enter. e.g. Glass of water, single atom in solid. T is constant
Gibbs entropy: S = -k_B*∑p_j*ln(p_j)
Can use z to link to thermodynamics
Expressing U in terms of z: U=-N(d(ln(x))/d(β))
1D SHO
Expressions for U at high and low T regimes
Bridge equation: F = -N*k_B*T*ln(z_1)
Use z to derive thermodynamic properties
Open: Grand canonical ensemble
Maximise Gibbs' entropy with constraints on N, P and U
Grand Partition Function Z: (Ej-uN) instead of Ej
Can write Gibbs' entropy in terms of U, N, T and F
F links to Thermodynamics
Indistinguishable particles: gases
Classical gases (dilute): g_J >> n_j
Density of states
Partition function of classical gas
For indistinguishable particles: Z_n = Z_1^N/N!
Maxwell-Boltzmann distribution describes occupancy: f(E) = A*e^(-E/k_B*T)
Maxwell-Boltzmann distribution of speeds: n° part's with velocity v: n(v)*dv = f(v)*g(v)*dv
Statistical weight of classical gases
Nota:
product((g_j^(n_j))/n_j!)
Quantum gases
Fermi gas
Statistical weight for Fermi gas
Nota:
omega = product(g_j!/n_j!(g_j-n_j)!)
Maximise at constant U and N to get expression for n_j
Probability distribution is n_j/g_j = FD distribution = 1/(1+e^((E-u)/kT)
Pauli's exclusion principle
Degenerate Fermi gas:
Fermi E: E_F = u at T=0
Fermi T: T_F = E_F/k_B
Bose-Einstein gas
Statistical weight for Boson gas
Nota:
omega = product((n_j+g_j-1)!/(n_j!*(g_j-1)!) which is approximately product(n_j+g_j)!/(n_j!*g_j!)
maximise ln(omega) at constant U and N to get
Bose-Einstein distribution: f_BE = 1/((e^((E-u)/kT)-1)
Photon gas: no chemical potential
Energy spectral density: u = E*g(w)*f(w)*dw
Nota:
E = h_bar w. g(w)dw = V/(2pi)^3 * 4*pi*k^2 dw f(w) = 1/(e^(h_bar*omega/kT)-1)
Planck's law of radiation (u(v))
Energy flux: V*integral(u(v)*dv) * c * 1/4
Nota:
Note: integral for u gives pi^4/15
Stefan-Boltzmann law: enery flux = sigma*t^4
Bose-Einstein condensation
At T=0
n_0 is large => u goes to 0
n' is proportional to T^(3/2)
Nota:
And n'/N = (T/T_B)^(3/2), where T_B is Bose Temperature
At T_B all particles are in excited state
At T_B, average distance between particle is comparable to De Broglie wavelength
Wavefunctions of atoms overlap => single wavefunction describing the whole system: condensate
Both quantum gases reduce to classical gas if very dilute: g_j >> n_j
Mostrar resumen completo
Ocultar resumen completo
¿Quieres crear tus propios
Mapas Mentales
gratis
con GoConqr?
Más información
.
Similar
Thermodynamics
eg612
Thermodynamics
Mayesha Fairuz
100 años de Soledad
JL Cadenas
Fichas de Inglés para la Prepa Abierta
Raúl Fox
Brainstorming con Mapas Mentales
Diego Santos
Lectura Rápida
Diego Santos
El Planeta Tierra
francoingles4a4
Mecanismos de cohesión
Diego Santos
INGLÉS I GRAMÁTICA BASICA
maya velasquez
Elaboración de mapas mentales
Jose antonio CASTE
Filosofía: Platón vs Aristóteles
Diego Santos
Explorar la Librería