Statistical Physics

Descripción

Graduação Thermodynamics & Stat. Physics Mapa Mental sobre Statistical Physics, creado por eg612 el 08/04/2014.
eg612
Mapa Mental por eg612, actualizado hace más de 1 año
eg612
Creado por eg612 hace más de 10 años
214
1

Resumen del Recurso

Statistical Physics
  1. Definitions
    1. Macrostate: description of a thermodynamic system using macroscopic variables
      1. Microstate: full description of system
        1. Many microstates can correspond to the same macrostate
      2. Fundamental postulate of Stat. Physics: every microstate has the same probability
        1. If 2 systems A & B are merged:
          1. Total entropy is extensive => S_AB = S_A + S_B
            1. => Boltzmann's Entropy: S = k_b ln(omega)
            2. Total number of microstates of AB
          2. Distinguishable particles: solids
            1. Isolated: microcanonical ensemble
              1. Statistical weight
                1. Need to maximise entropy S with constraints: ∑E_j*n_j=U and ∑n_j=N
                  1. Lagrange multipliers
                    1. Define partition function z = ∑e^(-βE_j)
                      1. Specify α from number of particles and partition function
                      2. Add dQ and equate to dU to find β= 1/k_B*T
                        1. n_j = (N/z)*e^(-E_j/(k_B*T))
                        2. Degeneracy g_j:
                          1. g_j multiplies Boltzmann factor
                      3. Closed: Canonical ensemble

                        Nota:

                        • Heat baths: heat can leave or enter. e.g. Glass of water, single atom in solid. T is constant
                        1. Gibbs entropy: S = -k_B*∑p_j*ln(p_j)
                          1. Can use z to link to thermodynamics
                            1. Expressing U in terms of z: U=-N(d(ln(x))/d(β))
                              1. 1D SHO
                                1. Expressions for U at high and low T regimes
                              2. Bridge equation: F = -N*k_B*T*ln(z_1)
                                1. Use z to derive thermodynamic properties
                            2. Open: Grand canonical ensemble
                              1. Maximise Gibbs' entropy with constraints on N, P and U
                                1. Grand Partition Function Z: (Ej-uN) instead of Ej
                                  1. Can write Gibbs' entropy in terms of U, N, T and F
                                    1. F links to Thermodynamics
                            3. Indistinguishable particles: gases
                              1. Classical gases (dilute): g_J >> n_j
                                1. Density of states
                                  1. Partition function of classical gas
                                    1. For indistinguishable particles: Z_n = Z_1^N/N!
                                      1. Maxwell-Boltzmann distribution describes occupancy: f(E) = A*e^(-E/k_B*T)
                                        1. Maxwell-Boltzmann distribution of speeds: n° part's with velocity v: n(v)*dv = f(v)*g(v)*dv
                                    2. Statistical weight of classical gases

                                      Nota:

                                      • product((g_j^(n_j))/n_j!)
                                  2. Quantum gases
                                    1. Fermi gas
                                      1. Statistical weight for Fermi gas

                                        Nota:

                                        • omega = product(g_j!/n_j!(g_j-n_j)!)
                                        1. Maximise at constant U and N to get expression for n_j
                                          1. Probability distribution is n_j/g_j = FD distribution = 1/(1+e^((E-u)/kT)
                                        2. Pauli's exclusion principle
                                          1. Degenerate Fermi gas:
                                            1. Fermi E: E_F = u at T=0
                                              1. Fermi T: T_F = E_F/k_B
                                            2. Bose-Einstein gas
                                              1. Statistical weight for Boson gas

                                                Nota:

                                                • omega = product((n_j+g_j-1)!/(n_j!*(g_j-1)!) which is approximately product(n_j+g_j)!/(n_j!*g_j!)
                                                1. maximise ln(omega) at constant U and N to get
                                                  1. Bose-Einstein distribution: f_BE = 1/((e^((E-u)/kT)-1)
                                                2. Photon gas: no chemical potential
                                                  1. Energy spectral density: u = E*g(w)*f(w)*dw

                                                    Nota:

                                                    • E = h_bar w. g(w)dw = V/(2pi)^3 * 4*pi*k^2 dw f(w) = 1/(e^(h_bar*omega/kT)-1)
                                                    1. Planck's law of radiation (u(v))
                                                      1. Energy flux: V*integral(u(v)*dv) * c * 1/4

                                                        Nota:

                                                        • Note: integral for u gives pi^4/15
                                                        1. Stefan-Boltzmann law: enery flux = sigma*t^4
                                                  2. Bose-Einstein condensation
                                                    1. At T=0
                                                      1. n_0 is large => u goes to 0
                                                        1. n' is proportional to T^(3/2)

                                                          Nota:

                                                          • And n'/N = (T/T_B)^(3/2), where T_B is Bose Temperature
                                                          1. At T_B all particles are in excited state
                                                            1. At T_B, average distance between particle is comparable to De Broglie wavelength
                                                              1. Wavefunctions of atoms overlap => single wavefunction describing the whole system: condensate
                                                  3. Both quantum gases reduce to classical gas if very dilute: g_j >> n_j
                                                Mostrar resumen completo Ocultar resumen completo

                                                Similar

                                                Thermodynamics
                                                eg612
                                                Thermodynamics
                                                Mayesha Fairuz
                                                100  años  de  Soledad
                                                JL Cadenas
                                                Fichas de Inglés para la Prepa Abierta
                                                Raúl Fox
                                                Brainstorming con Mapas Mentales
                                                Diego Santos
                                                Lectura Rápida
                                                Diego Santos
                                                El Planeta Tierra
                                                francoingles4a4
                                                Mecanismos de cohesión
                                                Diego Santos
                                                INGLÉS I GRAMÁTICA BASICA
                                                maya velasquez
                                                Elaboración de mapas mentales
                                                Jose antonio CASTE
                                                Filosofía: Platón vs Aristóteles
                                                Diego Santos