Dérivées

Description

Flashcards on Dérivées, created by Leonard Euler on 20/12/2014.
Leonard Euler
Flashcards by Leonard Euler, updated more than 1 year ago
Leonard Euler
Created by Leonard Euler almost 10 years ago
21
0

Resource summary

Question Answer
\[\dfrac{d}{dx} c\] \[0\]
\[\dfrac{d}{dx} x\] \[1\]
\[\dfrac{d}{dx} x^2\] \[2x\]
\[\dfrac{d}{dx} x^3\] \[3x^2\]
\[\dfrac{d}{dx} x^k\] \[k\cdot x^{k-1}\]
\[\dfrac{d}{dx} \dfrac{1}{x}\] \[-\dfrac{1}{x^2}\]
\[\dfrac{d}{dx} \sqrt{x}\] \[\dfrac{1}{2\sqrt{x}}\]
\[(\lambda\cdot u)'\] \[\lambda\cdot u'\]
\[(u+v)'\] \[u'+v'\]
\[(u\cdot v)'\] \[u'\cdot v+u\cdot v'\]
\[\Big(\dfrac{1}{u}\Big)'\] \[-\dfrac{u'}{u^2}\]
\[\Big(\dfrac{u}{v}\Big)'\] \[\dfrac{u'\cdot v-u\cdot v'}{v^2}\]
\[(u\circ v)'\] \[(u' \circ v)\cdot v'\]
\[(\sqrt{u})'\] \[\dfrac{u'}{2\sqrt{u}}\]
\[(u^k)'\] \[k\cdot u^{k-1}\cdot u'\]
\[\dfrac{d}{dx} \sin{x}\] \[\cos{x}\]
\[\dfrac{d}{dx} \cos{x}\] \[-\sin{x}\]
\[\dfrac{d}{dx} \tan{x}\] \[1+\tan^2{x}=\dfrac{1}{\cos^2{x}}\]
\[(\sin{u})'\] \[u'\cdot \cos{u}\]
\[(\cos{u})'\] \[-u'\cdot \sin{u}\]
\[(\tan{u})'\] \[u'\cdot(1+\tan^2{u})=\dfrac{u'}{\cos^2{u}}\]
\[\dfrac{d}{dx} e^x\] \[e^x\]
\[\dfrac{d}{dx} \ln{x}\] \[\dfrac{1}{x}\]
\[(e^u)'\] \[u'\cdot e^u\]
\[(\ln{u})'\] \[\dfrac{u'}{u}\]
Show full summary Hide full summary

Similar

Religious Studies - Ethics 1 Medical Ethics
irenehaastrup
Criminal Law
jesusreyes88
Character of Lady Macbeth
Ebony1023
The Internet
Gee_0599
Maths Revision
Asmaa Ali
Edexcel IGCSE Business Studies Key terms Ch 1-9
minsung.kang
AQA A2 Biology Unit 5 Chapter 11: Muscle Contraction
Charlotte Lloyd
Milgram (1963) Behavioural study of Obediance
yesiamanowl
The Tempest
Dirk Weibye
CSA IITU Part 1 (235)
Hello World
Admin 201 Exam
Aaron Torres