Dérivées de fonctions usuelles

Description

Dérivées de fonctions usuelles
etudes
Flashcards by etudes, updated more than 1 year ago More Less
Leonard Euler
Created by Leonard Euler over 9 years ago
bonsavoir.be
Copied by bonsavoir.be over 9 years ago
etudes
Copied by etudes over 9 years ago
1
0

Resource summary

Question Answer
\[c'\] \[0\]
\[x'\] \[1\]
\[ (x^2)'\] \[2x\]
\[ (x^3)'\] \[3x^2\]
\[ (x^k)'\] \[k\cdot x^{k-1}\]
\[(\frac{1}{x})'\] \[-\dfrac{1}{x^2}\]
\[ (\sqrt{x})'\] \[\dfrac{1}{2\sqrt{x}}\]
\[(\lambda\cdot u)'\] \[\lambda\cdot u'\]
\[(u+v)'\] \[u'+v'\]
\[(u\cdot v)'\] \[u'\cdot v+u\cdot v'\]
\[\Big(\dfrac{1}{u}\Big)'\] \[-\dfrac{u'}{u^2}\]
\[\Big(\dfrac{u}{v}\Big)'\] \[\dfrac{u'\cdot v-u\cdot v'}{v^2}\]
\[(u\circ v)'\] \[(u' \circ v)\cdot v'\]
\[(\sqrt{u})'\] \[\dfrac{u'}{2\sqrt{u}}\]
\[(u^k)'\] \[k\cdot u^{k-1}\cdot u'\]
\[ (\sin{x})'\] \[\cos{x}\]
\[ (\cos{x})'\] \[-\sin{x}\]
\[ (\tan{x})'\] \[1+\tan^2{x}=\dfrac{1}{\cos^2{x}}\]
\[(\sin{u})'\] \[u'\cdot \cos{u}\]
\[(\cos{u})'\] \[-u'\cdot \sin{u}\]
\[(\tan{u})'\] \[u'\cdot(1+\tan^2{u})=\dfrac{u'}{\cos^2{u}}\]
\[ (e^x)'\] \[e^x\]
\[ (ln{x})'\] \[\dfrac{1}{x}\]
\[(e^u)'\] \[u'\cdot e^u\]
\[(\ln{u})'\] \[\dfrac{u'}{u}\]
Show full summary Hide full summary

Similar

Pythagorean Theorem Quiz
Selam H
Geometry Vocabulary
patticlj
Algebra 2 Quality Core
Niat Habtemariam
GRE Study Precalc
Marissa Miller
Dérivées de fonctions usuelles
yohari
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
STEM AND LEAF DIAGRAMS
Elliot O'Leary
TYPES OF DATA
Elliot O'Leary
Geometry Formulas
Selam H
Statistics Equations & Graphs
Andrea Leyden