Question | Answer |
4 units to the right | ( x+4, y ) |
8 units down | ( x, y - 8 ) |
2 units left and 4 units up | ( x - 2 , y + 4 ) |
reflect over the y axis | ( - x, y ) |
reflect over the x axis | ( x, - y ) |
reflect over the line y=x | ( y, x ) |
rotate 90 degrees cc | ( -y, x ) |
rotate 180 degrees cc | ( -x, y ) |
rotate 270 degrees cc | ( y, - x ) |
A ( -2, 5), B (2, 4), C (3, -3) Rotate AB 270 degrees cc | A' (5,2) B' (4,-2) |
A ( -2, 5), B (2, 4), C (3, -3) Rotate BC 90 degrees clockwise | B' (4,-2) C' (-3,-3) |
A ( -2, 5), B (2, 4), C (3, -3) Rotate ABC across the line y=x | A' (5, -2) B' (4, 2) C' (-3,3) |
A ( -2, 5), B (2, 4), C (3, -3) Translate AC 3 units left and 2 units down | A' (-5, 3) C' (0, -5) |
A ( -2, 5), B (2, 4), C (3, -3) Translate ABC 2 units right and 1 unit up, then dilate by a factor of 2 | A' (0, 12) B' (8, 10) C' (10, -4) |
A ( -2, 5), B (2, 4), C (3, -3) Dilate AC by a factor of 3 then rotate 90 degrees clockwise | A' (15, 6) B' (-9, -9) (3y, -3x) |
A ( -2, 5), B (2, 4), C (3, -3) Translate AB up 2 units and down 2 units, then dilate by factor of 2, then rotate 270 degrees clockwise. | A' (-4, 10) B' (4, 8) A'' (-10,-4) B''(-8, 4) |
Describe ( x-3, y+6 ) | Translating 3 units left and 6 units up |
If A' was rotated 270 degrees cc what were the original points of A? | A (2, -5) |
parent function of linear equation | y = x |
direct variation | y = kx |
E (-1, -3.5) F (4, -3) G (0, 1) H (-4, -2) Scale factor 0.5 Graph | E (-1, -3.5) F (2, -1.5) G (0, 0.5) H (-2, -1) |
Want to create your own Flashcards for free with GoConqr? Learn more.