Ley de composición externa

Description

Mind Map on Ley de composición externa, created by jorgenaranjo1989 on 19/10/2014.
jorgenaranjo1989
Mind Map by jorgenaranjo1989, updated more than 1 year ago
jorgenaranjo1989
Created by jorgenaranjo1989 about 10 years ago
465
0

Resource summary

Ley de composición externa
  1. En símbolos
    1. es ley externa en A con operadores en B ⇔ Bx A → A es decir, si b B ∈ y a A ∈ la imagen del par (b ; a) = b ∗ a ∈ A
      1. Según las propiedades que deban satisfacer estas leyes de composición, se tienen los distintos tipos de estructuras ó sistemas axiomáticos.
        1. Monoide
          1. El par (A , ∗ ) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna ∗ se denomina monoide.
            1. Ejemplos de monoides
              1. ( N , + ) , ( Z , + ) , ( Q , + ) , son monoides. ( N , - ) no es un monoide porque la sustracción no es ley de composición interna en N. ( N , ∗ ) donde ∗ está definido como a ∗ b = máx.{a , b} es un monoide.
          2. Semigrupo
            1. Un monoide asociativo se denomina semigrupo.
              1. Si la ley de composición interna también es conmutativa se llama semigrupo conmutativo. Si existe el elemento neutro se dice que es un semigrupo con unidad ó semigrupo con identidad. El elemento neutro de llama identidad.
                1. Ejemplos de semigrupos ( N , + ) es un semigrupo conmutativo sin elemento neutro. ( N 0 , + ) es un semigrupo conmutativo con elemento neutro, el 0. ( N , • ) es un semigrupo conmutativo con elemento neutro ó identidad igual a 1.
            2. Grupo
              1. Sea el par (A , ∗ ) , donde A es un conjunto no vacío dotado de una ley de composición interna binaria
                1. (A , ∗ ) es un grupo ó se define sobre A una estructura de grupo sí: a) ∗ es asociativa. Es decir a ∀ , b ∀ , c ∀ : a, b, c ∈ A ⇒ ( ) ( ) a b c a b c ∗ ∗ = ∗ ∗ b) ∗ posee elemento neutro en A. Es decir e A ∃ ∈ / a ∀ , si a A ∈ ⇒ a e e a a ∗ = ∗ = c) Todo elemento de A es invertible en A respecto de ∗ . Es decir a A ∀ ∈ , a ´ A ∃ ∈ / a a ´ a ´ a e
              2. Grupo Abeliano ó Grupo conmutativo
                1. es cuando además de ser un grupo, d) ∗ es conmutativa. Es decir a ∀ , b ∀ : a, b ∈ A a b b a ⇒ ∗ = ∗ Si G = (A , ∗ ) es un grupo, se dice que es un grupo finito si el conjunto A es finito y su cardinal se llama orden del grupo.
                  1. Ejemplos 1) El par ( Z , ∗ ) donde Z es el conjunto de los números enteros y ∗ es una operación definida como a ∗ b = a + b + 3 forma un grupo abeliano. Comprobación: ∗ es una ley de composición interna en Z pues si a y b ∈ Z , a + b + 3 ∈ Z ∗ es asociativa pues ( ) a b c ∗ ∗ = (a + b +3) ∗ c = a + b +3 + c +3 = a + b + c + 6 y ( ) a b c ∗ ∗ = a ∗ (b + c + 3) = a + b + c + 3 + 3 = a + b + c + 6 ∗ tiene elemento neutro e = –3 , pues a A ∀ ∈ , a ∗ e = a entonces a + e +3 = a ⇒ e = –3 y e ∗ a = a entonces e + a + 3 = a ⇒ e = –3 tiene inverso a , a / a a e ′ ′ ∀ ∃ ∗ = , en nuestro caso a a′ ∗ = –3 ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a derecha a a 3 ′ ∗ = − ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a izquierda ∗ es conmutativa pues a b ∗ = a + b + 3 = b + a + 3 = b a
                    1. Otros ejemplos: 1 ) ( Z , + ) ; ( Q , + ) ; ( R , + ) y ( C , + ) Son grupos abelianos . También se llaman grupos aditivos debido a la operación aditiva. 2 ) ( N , + ) No es grupo. No tiene neutro ni inverso de cada elemento. 3 ) ( N 0 , + ) No es grupo. Tiene neutro, el 0 , pero no tiene inverso aditivo. 4 ) ( Q , • ) No es grupo, el 0 no tiene inverso multiplicativo. 5 ) ( R , • ) No es grupo, el 0 no tiene inverso multiplicativo. 6 ) ( Q – { 0 } , • ) y ( R – { 0 } , • ) Son grupos.
          Show full summary Hide full summary

          Similar

          Key Paintings
          Julia Lee
          Health and Social Care
          NicoleCMB
          PE 1 Multi Choice Questions
          Cath Warriner
          Year 11 Psychology - Intro to Psychology and Research Methods
          stephanie-vee
          Physics P1
          Phoebe Drew
          GCSE AQA Biology - Unit 3
          James Jolliffe
          Edexcel Additional Science Biology Topic 1- Genes and Enzymes
          hchen8nrd
          The Circulatory System
          Shane Buckley
          Britain and World War 2
          Sarah Egan
          2PR101 1.test - 9. část
          Nikola Truong
          Histologie
          Moloșnicov Tanciu