Premisas: Presupuestos y conclusiones en argumentos
Las premisas son las razones que alguien ofrece como fundamento o apoyo para la aceptación de la conclusión. Los razonamientos que estudia la lógica se llaman argumentos y su tarea consiste en
descubrir qué hace que un argumento sea válido y constituya una inferencia correcta. INDICADORES DE PREMISA: Dado que,.. como ..por que... la razón es que. Pueden deducirse de. en vista de que..
puesto que INDICADORES DEDE CONCLUSION: en consecuencia.. luego.. por esto .. por lo anterior.. por esta razón.. por lo tanto.. se sigue que.. Así que.. podemos deducir.. lo cual muestra/indica que ..
de acuerdo a
EJEMPLO1: La autoridad solo puede hacer lo que la ley le indica (Premisa 1) La población solo tiene
prohibido lo que la ley marca (Premisa 2) Las autoridades no pueden hacer lo que quieren, y las
personas pueden hacer todo lo que quieran menos lo que les prohíbe la ley. (Conclusión).
EJEMPLO2: La autoridad solo puede hacer lo que la ley le indica (Premisa 1) La población solo tiene
prohibido lo que la ley marca (Premisa 2) Las autoridades no pueden hacer lo que quieren, y las
personas pueden hacer todo lo que quieran menos lo que les prohíbe la ley. (Conclusión).
EJEMPLO3: Kaspárov es un jugador de ajedrez que fue vencido por una computadora. (Premisa 1). El
hombre es quien inventó y programó a las computadoras, incluyendo a la computadora que venció a
Kaspárov. (Premisa 2) Kaspárov fue vencido por la inteligencia humana y no por un aparato, pues los
conocimientos fueron programados por el hombre. (Conclusión).
Un argumento es una secuencia de oraciones en la que las premisas están al comienzo y la conclusión
al final. La inferencia es un proceso por el cual se llega a una proposición y se la afirma sobre la base
de otras proposiciones aceptadas anteriormente. Un razonamiento es una estructura lógica formada
por proposiciones -verdaderas o falsas- que afirman o niegan algo, por lo que las mismas se
diferencian de las preguntas, las órdenes o las exclamaciones. No es posible identificar la conclusión
por su ubicación en el argumento, ya que podría aparecer al final, en el medio o al principio; pero si
identificarla con palabras o frases como son: " por lo tanto", "por ende", "luego", "por consiguiente",
etc. Asimismo, para introducir las premisas suelen usarse: "puesto que", "porque", "pues", "en tanto
que", "en razón de que", etc.
TIPOS DE RAZONAMIENTO Y LOGICA
RAZONAMIENTOS DEDUCTIVOS Y RAZONAMIENTOS NO DEDUCTIVOS
Razonamientos deductivos:Requieren que de sus premisas se desprendan la conclusión y serán
válidos o no según la relación que se establezca entre las premisas y la conclusión, y no la verdad o
la falsedad de las mismas. La conclusión de un argumento válido es una consecuencia lógica de sus
premisas cuando, de la afirmación de estas, no puede sino aceptarse aquella.
EJEMPLO: Todo lo que es bueno es caro. Todo es bueno, Todo es caro. Premisa: Todo lo que es bueno
es caro. Conclusión: Si todo es bueno, entonces todo es caro. * En este tipo de razonamiento, las
premisas brindan un fundamento seguro y necesario para aceptar la conclusión
Anterior Razonamientos no deductivos: No pretenden que sus premisas sean el fundamento para la
aceptación de la conclusión, sin que ofrezcan algún fundamento para ello. Estos razonamientos
serán válidos o no, mejores o peores según la probabilidad de que sus premisas confieran para la
aceptación de la conclusión.
Razonamientos Inductivos:Conducen a una conclusión que no se deduce con fundamentos de las
premisas, y que es más o menos probable a partir del examen o la observación de una serie de
casos, pero no otorga garantías acerca de la verdad de ésta.
EJEMPLO DE RAZONAMIENTO INDUCTIVOS: Premisa: Observo el cuervo nº 1 y es negro Premisa:
Observo el cuervo nº 2 y es negro Premisa: Sigo observando los cuervos y tras haber observado mil
cuervos Conclusión: Llego a la conclusión de que los cuervos son negros
Razonamientos Cotidianos: Son también explicaciones estadísticas que asumen la forma de un
razonamiento inductivo en la cual la conclusión no se infiere con certeza sino con cierta
probabilidad, que será mayor, cuanto mayor haya sido el número de casos observados.
Razonamientos Analógicos: Se basan en la comparación de dos o más objetos que tienen en común
más de una propiedad o característica. Es el fundamento de nuestros razonamientos ordinarios en
los que, a partir de experiencias pasadas, discernimos lo que puede pasar en el futuro, no siendo
seguros. Parten de premisas más o menos generales y llegan también a una conclusión general, la
cual realiza una previsión sobre el futuro
EJEMPLO DE RAZONAMIENTO ANALOGICO: Premisa: Los carneros no usan sus cuernos para defenderse
sino para luchar con otros machos y procrear junto a las hembras de la manada Premisa: Los toros se
parecen a los carneros en muchos aspectos, incluso en que tienen cuernos Conclusión: Entonces
también los poseen para luchar con otros machos y procrear junto a las hembras de la manada
Premisa: Lo que ha ocurrido en el pasado ocurrirá en el futuro Premisa: En el pasado, cada vez que
ocurrió A ocurrió también B Conclusión: En el futuro, cada vez que ocurra A ocurrirá también
Que es un razonamiento? Es un encadenamiento lógico entre dos o mas juicios de los cuales el ultimo
es consecuencia de los anteriores. para todo razonamiento es necesario dos o mas juicios pero para
que los juicios es necesario que entre ellos exista un nexo lógico que permita llegar a una
conclusión.En todo razonamiento hay una materia y una forma. La materia son los sujetos y la forma
es el nexo lógico que relaciona el juicio o los juicios con uno desconocido que es la conclusion
EJEMPLO: Todos los niños son personas (premisa), Todos los alumnos de la clase son niños (premisa), Todos
alumnos de la clase son personas (conclusión). las dos premisas forman un antecedente es la primer parte de un
razonamiento la conclusión es la otra parte del razonamiento
Tema 03: Proposiciones simples y compuestas
Proposiciones simples y compuestas
¿Que es una proposición? Una proposición es toda oración o enunciado al que se le puede asignar un
cierto valor (v o f). Si no puede concluir que es verdadero o falso no es proposición. Es cualquier
agrupación de palabras o símbolos que tengan sentido y de la que en un momento determinado se
pueda asegurar si es verdadera o falsa. La verdad o falsedad de una proposición es lo que se llama su
valor lógico o valor de verdad. Las proposiciones se denotan con letras minúsculas. Ejemplo: p, q, r, a,
b.
Formación Lógica: consiste en representar simbólicamente las formas de pensamiento y para eso se hace uso de los operadores lógicos y de las
variables lógicas: es decir representar las preposiciones que están en el lenguaje natural al lenguaje proposicional.(formulas lógicas
Enunciado: es una oración o expresión lingüística o matemática que expresa una idea con
ambigüedades, la cual o es posible asignarle un valor definido de verdad o falsedad
Proposiciones simples o atómicas: Las proposiciones simples o atómicas son proposiciones que ya no
pueden descomponerse en dos expresiones que sean proposiciones
EJEMPLO: 1.La ballena es roja. 2.La raíz
cuadrada de 16 es 4. 3.Gustavo es alto
4.Teresa va a la escuela
Proposiciones compuestas o moleculares: Las proposiciones en las que aparecen las partículas
gramaticales como: No, o, y, si…entonces, si y solo si. Se les llama Proposiciones Compuestas o
Moleculares.
EJEMPLO : 1.La ballena no es roja 2.Gustavo no es alto 3.Teresa va a la escuela o María es inteligente
4.4 es menor que 8 o 6 es mayor que 10 5.El 1 es el primer número primo y es mayor que cero 6.El 7 es
mayor que 5 y 7 es menor que 10 7.Si Yolanda es estudiosa entonces pasará el examen 8.Si corro
rápido entonces llegaré temprano 9.Terminaré rápido si y sólo si me doy prisa 10.Aprenderé
Matemáticas si y sólo si estudio mucho
LOGICA : Estudia los métodos para llegar a decir que un razonamiento es valido o invalido
Tema 01 Principios lógicos: Identidad, no contradicción, exclusión del término medio y de razón
suficiente:
Son cuatro principios, los tres primeros enunciados por Aristóteles y el cuarto agregado por Leibnitz
1).El principio de identidad: Desde el punto de vista del ser, (ontológico) se enuncia expresando que
todo objeto (de conocimiento) es igual a sí mismo. Sin embargo, desde el punto de vista lógico, su
enunciado se relaciona con la estructura de las proposiciones, expresando que el principio de
identidad se verifica cuando en una proposición verdadera el concepto contenido en el predicado es
total o parcialmente idéntico al concepto contenido en el sujeto: “el triángulo tiene tres lados”.
2). El principio de (no) contradicción: También tiene una formulación ontológica conforme a la cual un
objeto (de conocimiento) no puede ser y al mismo tiempo no-ser. Desde el punto de vista lógico, este
principio se enuncia expresando que dos proposiciones contradictorias no pueden ser ambas
verdaderas; o que toda contradicción encierra una falsedad: Si es verdad que “el triángulo tiene tres
lados”, no puede ser verdad que “el triángulo no tiene tres lados”. En relación a la lógica aristotélica, o
clásica, puede decirse que el principio de no contradicción es el fundamental de todos; al punto de que
existen quienes lo consideran el único principio, del cual se extraen los otros.
3). El principio de tercero excluido: Este principio está estrechamente vinculado con el de no
contradicción, al punto que a veces se lo distingue de éste expresando que mientras el de no
contradicción expresa que dos proposiciones contradictorias no pueden ser ambas verdaderas, el de
tercero excluido expresa que dos proposiciones contradictorias no pueden ambas ser falsas. Sin
embargo, es más apropiado referir este principio al concepto de valor de verdad de la lógica clásica,
conforme al cual una proposición solamente puede tener valor de verdadera o de falsa; y, por lo tanto,
entre la verdad o la falsedad, no existe una tercera posibilidad. En consecuencia, la relación con el
principio de no contradicción queda mejor expresada en cuanto al principio de tercero excluido, si se
enuncia en el sentido de que, de dos proposiciones contradictorias, necesariamente una a ser
verdadera y la otra ha de ser falsa.
4).El principio de razón suficiente: Este principio fue enunciado por Leibnitz en un sentido ontológico
expresando que todo lo que existe tiene su razón de ser. Algunos filósofos le han dado una
enunciación en sentido lógico, expresando que todo juicio es falso o verdadero, por alguna razón; y
por lo tanto ha de ser posible justificar su veracidad o su falsedad por medio de la razón. De este
principio, se considera derivado el:
*El principio de causalidad: Este principio, más propiamente ontológico, implica que todo lo que
existe tiene una causa; por lo cual todo lo que es efecto de una causa puede convertirse a su vez en
causa de otro efecto.
Principio de la lógica suprema: de identidad, no contradicción, tercero excluido, razón de suficiente
¿Que son los principios lógicos supremos ? Son los fundamentos que determinan ciertas reglas a seguir, para lograr la coherencia y sistemacidad de los pensamientos en las formas y contenidos.
* De identidad: Se expresa a la igualdad de la idea consigo misma. Mediante la formula X es X
EJEMPLO: Leo es Leo
* No contradicción: El principio de no contradicción dice que su proposición y su negación pueden ser ambas verdaderas al mismo tiempo en el mismo respecto.
EJEMPLO: Una mujer no puede estar medio embarazada. Esta embarazada o no lo esta.
*Tercer excluido: El principio del tercer excluido lleva a una exclusión a sumas estrictas expresión: "O ALGO NO ES ; PUEDE HABER UNA TERCERA POSIBILIDAD".
EJEMPLO: El pájaro es verde o no lo es. No puede haber una tercera exclusión.
*Razonamiento suficiente: Solo es verdadero aquello que se puede probar suficientemente, basándose en otros conocimientos o razones ya demostradas
EJEMPLO: Si una bolsa de dinero contiene 101 monedas entonces esa bolsa contiene mas de $1y no importa de que valor sean las monedas.
Tema 02:Premisas, presupuestos y conclusiones en argumentos
Tema 04: Silogismos categóricos: Proposición categórica, sujeto y predicado
¿Silogismo? Un silogismo es un razonamiento en el cual la conclusión es deducida a partir de dos
premisas. Por este motivo, en la lógica clásica se los denomina inferencias mediatas. El silogismo
categórico es el que se compone de tres proposiciones categóricas, que tienen tres términos dos de los
cuales aparecen en las proposiciones iniciales, y cuya conclusión es una proposición categórica que
contiene dos de los tres términos del silogismo, uno como sujeto y el otro como predicado:
EJEMPLO:Todos los hombres son mortales
Sócrates es hombre Sócrates es mortal
La conclusión se integra, en consecuencia, como uno de los términos que es tomado de la primera
premisa, y otro que es tomado de la segunda premisa, cada uno de los cuales ocupa sea el lugar de
sujeto sea el de predicado de la conclusión. El término que ocupa en la conclusión la posición del
predicado, es denominado término mayor, el que ocupa el lugar del sujeto de la conclusión es
denominado término menor; y el que apareciendo en las premisas no lo hace en la conclusión es
denominado término medio. La premisa de la cual es tomado el término mayor, se denomina premisa
mayor; en tanto que la premisa de la que es tomado el término menor, se denomina premisa menor.
Un silogismo se representa simbólicamente con un formato gráfico similar al de una suma aritmética:
Premisa mayor: A — B Premisa menor: C — D Conclusión: E — F
Se llama modo de un silogismo, la expresión del agrupamiento de sus premisas y su conclusión,
siguiendo la codificación literal de las proposiciones categóricas, (A, E, I, O). Pero como - según se
demuestra - no es suficiente con el modo para describir precisamente la estructura de un silogismo, se
adiciona a ello lo que se denomina la figura del silogismo, que se determina según el término medio, el
cual puede asumir cuatro figuras posibles: La combinación de 64 modos diferentes posibles para cada
una de las cuatro figuras, determina la posibilidad de 256 formas distintas para los silogismos
categóricos; aunque solamente algunas conducen a conclusiones válidas. Para que un silogismo sea
válido debe observar ciertas reglas, el incumplimiento de cualquiera de las cuales determina que
pierda validez.
HAY DOS GRUPOS DE REGLAS:
Reglas de los términos: Son cuatro reglas que determinan: Todo silogismo categórico debe contener
necesariamente tres términos, uno de los cuales debe ser utilizado en el mismo sentido en todo el
razonamiento. El término medio debe ser un concepto que por lo menos en una de las premisas ha de
poseer extensión universal; es decir, esté empleado con el alcance de comprender a la totalidad de los
objetos integrantes de la clase a que se refiere. En la conclusión no puede haber ningún término que
contenga el concepto con una extensión mayor que aquella con que se encuentre empleado en las
premisas. El término medio debe aparecer en las dos premisas, pero no en la conclusión.
Reglas de las proposiciones:También son cuatro reglas que determinan: De dos premisas negativas no
es posible extraer ninguna conclusión. Por lo tanto, por lo menos una de las premisas debe ser
afirmativa. De dos premisas particulares no es posible extraer ninguna conclusión. Por lo tanto, por lo
menos una de las premisas debe ser general. De dos premisas afirmativas no es posible extraer una
conclusión negativa. Si en un silogismo existe una premisa particular, o una premisa negativa, la
conclusión deberá ser, respectivamente, particular o negativa. Por lo tanto, frente a un silogismo
determinado a los efectos de determinar si posee validez como razonamiento, en primer término,
debe analizarse su modo para establecer si cumple con las reglas de las proposiciones; y luego, en caso
afirmativo, examinar si cumple con las reglas de los términos.
Tema 05: Comunicación de argumentos por medio de organizadores gráficos: Mapas mentales, mapas
conceptuales, mapas semánticos, cuadros sinópticos, etc.
Un organizador Gráfico es una representación visual de conocimientos que presenta información
rescatando aspectos importantes de un concepto o materia dentro de un esquema usando etiquetas.
Se le denomina de variadas formas, como: mapa semántico, mapa conceptual, organizador visual,
mapa mental etc.
Habilidades que desarrollan El pensamiento crítico y creativo. Comprensión. Memoria. Interacción con
el tema. Empaque de ideas principales. Comprensión del vocabulario. Construcción de conocimiento.
Elaboración del resumen, la clasificación, la gráfica y la categorización.
Los organizadores gráficos (O.G.) se enmarcan en el cómo trabajar en el aula de acuerdo con el modelo
constructivista del aprendizaje. Moore, Readence y Rickelman (1982) describen a los O.G como el
suministro de una estructura verbal y visual para obtener un nuevo vocabulario, identificando,
clasificando las principales relaciones de concepto y vocabulario dentro de una unidad de estudio. Un
organizador gráfico es una presentación visual de conocimientos que presenta información rescatando
aspectos importantes de un concepto o materia dentro de un armazón usando etiquetas. Los
denominan de diferentes formas como: mapa semántico, organizador visual, cuadros de flujo, cuadros
en forma de espinazo, la telaraña de historias o mapa conceptual, etc. Los organizadores gráficos son
maravillosas estrategias para mantener a los aprendices involucrados en su aprendizaje porque
incluyen tanto palabras como imágenes visuales, son efectivos para diferentes aprendices, incluso con
estudiantes tale