Calculus I

Description

Mind Map on Calculus I, created by GraceEChem on 08/12/2014.
GraceEChem
Mind Map by GraceEChem, updated more than 1 year ago
GraceEChem
Created by GraceEChem about 10 years ago
631
19

Resource summary

Calculus I
  1. Limits
    1. Infinite limits
      1. Divide top and bottom by biggest power
        1. 1/x^n = 0
        2. Finite limits
          1. Continuous, plug in constant
            1. 0/0 is your answer?
              1. Factor and Simplify
        3. Derivatives
          1. Product Rule
            1. (fg)' = f'g+g'f
            2. Quotient Rule
              1. (f/g)' = (f'g - g'f) / g^2
              2. Power Rule for Functions
                1. (f^n)' = nf^(n-1)f'
                2. Chain Rule
                  1. dy/dx = (dy/du)(du/dx)
                    1. for y=y(u) and u=u(x)
                    2. [f(g(x)]' = f'(g(x))g'(x)
                    3. Finding 2nd Derivative
                      1. just take the derivative of the derivative
                      2. f(x) = e^x, f'(x) = e^x
                        1. f(x) = ln x, f'(x) =1/x
                          1. g(x) = loga(x), g'(x) = (1/ln a)(1/x)
                            1. f'(x) = ln(a)a^x
                            2. Chain Rule and Logs
                              1. g(x) = ln(f(x))
                                1. f'(x)/f(x)
                              2. ln(x) + 1/x (x')
                            3. Marginal Analysis/Linear Approximation
                              1. f(x+delta x) ~= f(x) + delta x(f'(x))
                                1. or Marginal Cost = C'(x)
                                2. Implicit Differentiation
                                  1. Treat x as x and y as f(x), give derivative of y w/respect to x
                                    1. Differentiate both sides w/respect to x with y as f(x)
                                      1. Chain rule, differentiating terms with y
                                        1. Solve for dy/dx in terms of x and y
                                    2. Increasing/Decreasing Functions
                                      1. Use 1st Derivative
                                        1. Test points @ f'(x) = 0
                                          1. Plug test points into f'(x)
                                            1. And where f'(x) does not exist
                                              1. CRITICAL POINTS!
                                            2. Concavity
                                              1. Use f''(x)
                                                1. Test points @ f''(x) = 0
                                                  1. And where f''(x) does not exist
                                                    1. Inflection point where concavity changes
                                              2. Positive/Negative
                                                1. Test points on f(x)
                                              3. Optimization
                                                1. x = c is critical point if f'(c) = 0
                                                  1. x = c relative min/max if f'(c) changes sign
                                                    1. x = c abolute min/max
                                                    2. Closed Interval
                                                      1. find where f'(x)=0
                                                        1. plug those points into f(x)
                                                          1. compare against interval points for absolute max/min
                                                      2. Open Interval
                                                        1. find one critical point, where f'(x)=0
                                                          1. this shows concavity
                                                      3. Exponents
                                                        1. Compound interest
                                                          1. Yearly
                                                            1. P(t) = P(1+r)^t
                                                            2. Monthly
                                                              1. P(t) = P(1+r/12)^12t
                                                              2. Continuously
                                                                1. P(t) = Pe^rt
                                                            Show full summary Hide full summary

                                                            Similar

                                                            Limits AP Calculus
                                                            lakelife62
                                                            Calculus & Integral 1 - Known limits
                                                            Bassam Mansour
                                                            Basic Derivative Rules
                                                            Bill Andersen
                                                            Calculus
                                                            natz994
                                                            Integration Techniques
                                                            Rob Grondahl
                                                            Techniques of Integration
                                                            hamidymuhammad
                                                            Calculus II Improper Integrals
                                                            Anthony Campos
                                                            Series Strategy
                                                            Rob Grondahl
                                                            STRATEGY OF INTEGRATION
                                                            intan_syahirah97
                                                            Derivadas
                                                            Roxy Hughes
                                                            Mathematicalproving
                                                            Sharifah Huda