Funciones y gráficas

Description

Mind Map on Funciones y gráficas, created by Jennifer Estefania Suárez Intriago on 17/03/2020.
Jennifer Estefania Suárez Intriago
Mind Map by Jennifer Estefania Suárez Intriago, updated more than 1 year ago
Jennifer Estefania Suárez Intriago
Created by Jennifer Estefania Suárez Intriago over 4 years ago
30
0

Resource summary

Funciones y gráficas
  1. FUNCIONES REALES
    1. Correspondencia entre dos conjuntos numéricos (x, y)
      1. x: variable independiente
        1. y: variable dependiente
        2. Gráfica de una función
          1. Se dibujan ejes de coordenadas
            1. x: eje horizontal (abscisas)
              1. y: eje vertical (ordenadas)
              2. Cada pareja de valores se representa por un punto en la gráfica
                1. Los puntos se unen si variable independiente puede tomar cualquier valor real en el rango estudiado
                  1. La línea (recta o curva) que se forma es la gráfica de la función
              3. Dominio y recorrido
                1. Dominio: conjunto de valores de x que tienen imagen
                  1. Recorrido o imagen: conjunto de valores de y que son imagen de algún valor de x perteneciente al dominio
                  2. Funciones definidas a trozos
                    1. Funciones definidas con distintas expresiones algebraicas según los valores de x
                  3. PROPIEDADES DE LAS FUNCIONES
                    1. Continuidad y discontinuidad
                      1. Función continua
                        1. Un solo trazo, sin levantar el lápiz del papel
                        2. Función discontinua
                          1. Hay un "agujero" en la gráfica
                            1. La función no está definida en el punto
                              1. El valor de la función queda separado del resto
                              2. Presenta un salto
                                1. El valor de la función crece (o decrece) indefinidamente cuando nos acercamos al punto
                              3. Funciones periódicas
                                1. Su valor se repite cada vez que la variable independiente recorre un cierto intervalo
                                  1. Periodo: valor del intervalo
                                2. Simetrías
                                  1. PAR: una función es simétrica respecto al eje OY, si f(-x)=f(x)
                                    1. IMPAR: función simétrica respecto al origen de coordenadas cuando f(-x)=-f(x)
                                  2. TASA DE VARIACIÓN Y CRECIMIENTO
                                    1. Tasa de variación media
                                      1. Indica la variación relativa de la función respecto a la variable independiente
                                      2. Crecimiento y decrecimiento
                                        1. Función creciente: dados dos puntos cualesquiera del mismo, si x1<x2 entonces f(x1)<f(x2)
                                          1. Función decreciente: dados dos puntos cualesquiera del mismo, si x1<x2 entonces f(x1)>f(x2)
                                          2. Máximos y mínimos
                                            1. Máximo relativo
                                              1. Punto donde la función pasa de ser creciente a decreciente
                                              2. Máximo absoluto
                                                1. Punto más alto de la gráfica de la función
                                                2. Mínimo relativo
                                                  1. Punto donde la función pasa de ser decreciente a creciente
                                                  2. Mínimo absoluto
                                                    1. Punto menor de la gráfica de la función
                                                  3. Puntos de inflexión
                                                    1. Función cóncava: segmento que une dos puntos cualesquiera de la curva se queda debajo de ella (curva hacia arriba)
                                                      1. Función convexa: segmento que une dos puntos cualesquiera de la curva se queda encima de ella (curva hacia abajo)
                                                    Show full summary Hide full summary

                                                    Similar

                                                    Weimar Germany 1919: The Spartacists and the constitution
                                                    Chris Clayton
                                                    WAVES
                                                    toritorx
                                                    Silas Marner notes
                                                    mehxinee
                                                    USA stock market collapse
                                                    Emily Tisch
                                                    Important Spanish Verbs
                                                    madiywarner
                                                    Geography AQA Revison topics Migration, Population Change, Youthful Populations and more
                                                    dburns8731
                                                    Romeo and Juliet: Key Points
                                                    mbennett
                                                    Astronomy Practice Quiz
                                                    cbruner
                                                    Truman Doctrine, Marshall Plan, Cominform and Comecon
                                                    Alina A
                                                    Coastal Development and physical processess
                                                    Corey Meehan
                                                    Romeo and Juliet notes
                                                    Faizaan Mohmed