Limites y continuidad

Description

Limites y continuidad
HUGO GIOVANNI ORTUñO PEREZ
Mind Map by HUGO GIOVANNI ORTUñO PEREZ, updated more than 1 year ago
HUGO GIOVANNI ORTUñO PEREZ
Created by HUGO GIOVANNI ORTUñO PEREZ over 3 years ago
715
0

Resource summary

Limites y continuidad
  1. Continuidad
    1. Una función tendrá continuidad si no se presentan en ella puntos de ruptura, es decir, puntos donde la función no se encuentre definida o bien, en el caso de que el límite de la función no exista cuando la variable independiente tiende a dicho punto.
      1. Una función ƒ es continua en a si y solo si se satisfacen las siguientes condiciones:
          1. En caso de que una o más de estas condiciones no se cumpla, se asume que la función ƒ es discontinua en a.
          2. Método para verificar la continuidad de una función
            1. Verificar si ƒ es continua en a
              1. f(a) existe
                1. lim f(x) existe x-a
                  1. lim f(x)=f(a) x-a
                    1. f(x) es continua en a
                      1. Función continua
                      2. Se puede redefinir a
                        1. Discontinuidad removible
                    2. ƒ (x) es discontinua en a
                      1. Discontinuidad esencial
          3. Limites
            1. Sea un función de f(x) definida para todo número real x, con excepcion de x=0. Se define el limite de la funcion f(x) cuando x=0 como el valor L que la función arrojaría si esta función estuviera definida por el valor de x
              1. Calculo de limites
                1. Se sustituye el valor x en la función f(x), se observa el resultado, si este en un número o un valor infinito, ya hemos terminado.
                  1. En caso contrario, es necesario continuar con los siguientes pasos, los cuales no llevan un orden, por lo que pueden aplicarse indistintamente.
                  2. Se utilizan una o mas de las propiedades anteriormente analizadas según se requiera.
                    1. Se transforma o simplifica la función utilizando propiedades e identidades algebraicas, trigonometricas o trascendentes, posteriormente se calcula el limite de la nueva función utilizando el paso 1.
                      1. Si a un no se consigue encontrar el valor del límite, se recomienda probar con otra transformación algebraica, trigonometrica o trascendental.
                  Show full summary Hide full summary

                  Similar

                  Límites y continuidad
                  Manuel Ruiz
                  LIMITES Y CONTINUIDAD
                  Liz Castellano
                  adjectives and adverbs
                  kiejrys
                  Of Mice and Men
                  becky_e
                  Year 11 Psychology - Intro to Psychology and Research Methods
                  stephanie-vee
                  B6 - Brain and Mind OCR
                  franimal
                  STEM AND LEAF DIAGRAMS
                  Elliot O'Leary
                  CPA Exam Topics and breakdown
                  joemontin
                  Math's Core 1
                  mitchcharlie
                  B1.1.1 Diet and Exercise Flash Cards
                  Tom.Snow
                  Cells
                  pari parmar