ESTRUCTURAS ALGEBRAICAS_1

Description

Mind Map on ESTRUCTURAS ALGEBRAICAS_1, created by Daniel PM on 14/11/2013.
Daniel PM
Mind Map by Daniel PM, updated more than 1 year ago More Less
cabt_america
Created by cabt_america about 11 years ago
Daniel PM
Copied by Daniel PM about 11 years ago
28
1

Resource summary

ESTRUCTURAS ALGEBRAICAS_1
  1. OPERACIONES BINARIAS Y SUS PROPIEDADES
    1. ESTRUCTURA DE GRUPO
      1. ESTTRUCTURAS DE ANILLO Y DE CAMPO
        1. ISOMORFISMOS Y HOMOMORFISMOS
          1. DEFINICIONES
            1. FUNCIONES
              1. INYECTIVA
                1. PARA CADA VALOR DE Y NO CORRESPONDE UN VALOR DE X
                2. SUPRAYECTIVA
                  1. PARA CADA VALOR DE Y PUEDEN EXISTIR UNO O MAS VALORES DE X
                  2. BIYECTIVA
                    1. PARA CADA VALOR DE Y EXISTE UN VALOR DE X
                3. ISOMORFISMOS
                  1. PROVIENE DE
                    1. ISO = MISMO MORFO= FORMA
                    2. EN FORMA SENCILLA ES
                      1. LA IDEA DE DOS SISTEMAS TAN PARECIDOS QUE PARECIERA QUE SON LOS MISMOS
                        1. EN UNA FUNCION BIYECTIVA
                          1. EJEMPLO
                      2. HOMOMORFISMOS
                        1. Es una función que preserva la estructura entre dos estructuras matemáticas relevantes.
                          1. UN ANILLO EN CONTRA DE UN CAMPO
                      3. Propiedades elementales de los grupos
                        1. Grupo
                          1. Sea el par (A ,* )
                            1. (A , *) es un grupo ó se define sobre A una estructura de grupo
                              1. * es asociativa.
                                1. Es decir Va, Vb, Vc, ε A: → (a*b)*c = a*(b*c)
                              2. Todo elemento de A es invertible en A respecto *
                                1. Es decir Va’ ε A, Ǝa’ ε A / a*a’ = e
                                2. Donde A es un conjunto no vacío dotado de una ley de composición interna binaria *
                              3. Subgupo
                                1. Un subconjunto no vacío B, del conjunto A es un subgrupo de ( A , ) si y solo sí ( B , ) es un grupo.
                                  1. Por ejemplo
                                    1. ( Z , + ) es un subgrupo de ( Q , + ).
                              Show full summary Hide full summary

                              Similar

                              GCSE English Literature: Of Mice and Men
                              Andrea Leyden
                              Women in Nazi Germany - Flashcards
                              Louisa Wania
                              AS Psychology - Research Methods
                              kirstygribbin
                              Databases
                              Dean Whittle
                              Biology Unit 4: Respiration and Photosynthesis
                              Charlotte Lloyd
                              Biology B2.3
                              Jade Allatt
                              Edexcel Additional Science Biology Topic 1
                              hchen8nrd
                              GCSE Maths: Statistics & Probability
                              Andrea Leyden
                              AQA Business Unit 1
                              lauren_binney
                              Using GoConqr to study English literature
                              Sarah Egan
                              Using GoConqr to learn German
                              Sarah Egan