My systems of equations' mindmap

Description

My mindmap of systems of equations
Dani Calvo
Mind Map by Dani Calvo, updated more than 1 year ago
Dani Calvo
Created by Dani Calvo almost 9 years ago
54
0

Resource summary

My systems of equations' mindmap
  1. Substitution method
    1. 1) First of all, you have to isolate an unknown like this:
      1. y=24-4x
        1. 2) Then, you substitute the isolated unknown in the other equation:
          1. 2x-3(24-4x)=-2
            1. 3) Just solve the equation:
              1. 2x+12x=-2+72
                1. 14x=70
                  1. [x=5]
                    1. [y=24-20=4]
                      1. (5,4)
          2. Example: 2x-3y=-2
            1. 4x+y=24
          3. Addition/Substraction method
            1. 1) In this case, you've to start multiplying one equation in order to equal an unknown in both systems:
              1. (2x-y=9)4
                1. 8x-4y=36

                  Annotations:

                  • 4y
                  1. 3x+4y=-14

                    Annotations:

                    • 4y
                2. 2) Then, you have to remove the equal unknown in one equation like this:
                  1. 3x+4y=-14
                    1. +
                      1. 8x-4y=36
                        1. -----------------
                          1. 11x=22
                            1. [x=2]
                            2. 11x=22
                      2. 3) You have just done it
                        1. [x=2]
                          1. 4-9=y
                            1. -5=y
                          2. (2, -5)
                      3. Example: 2x–y=9
                        1. 3x+4y=–14
                      4. Equalization Method
                        1. 1) The first step is to isolate an unknown in both equations:
                          1. x=(-7-3y)/2
                            1. x=(-4+2y)/3
                            2. 2) Next, you substitute one "x" by the other equation:
                              1. (-7-3y)/2=(-4+2y)/3
                                1. 3) Solve it now!
                                  1. 3(-7-3y)=2(-4+2y)
                                    1. -21+8=-y
                                      1. [13=y]
                                        1. [x=-8+26=18]
                              2. Example: 2x+3y=−7
                                1. 3x−2y=−4
                              3. Graphical method
                                1. Example: 2x–3y=–2
                                  1. 4x+y =24
                                  2. 1) This is the most different method; you would find the solution trying with different combinations:
                                    1. x
                                      1. -2
                                        1. -1
                                          1. 0
                                            1. 1
                                              1. 2
                                              2. y=24
                                                1. y=20
                                                  1. y=16
                                        2. y=24-4x
                                          1. y=32
                                            1. y=28
                                          2. 2) You have to do it with both equations:
                                            1. x
                                              1. -2
                                                1. -1
                                                  1. 0
                                                    1. 1
                                                      1. 2
                                                        1. y=2
                                                    2. y=0
                                                      1. y=0.6^
                                                        1. y=1.3^
                                                    3. y=0.6^
                                                  2. y=(2+2x)/3
                                              Show full summary Hide full summary

                                              Similar

                                              Sistema Nervioso
                                              Escolapios Albacete
                                              Statistics Equations
                                              maya velasquez
                                              “In knowledge there is always a trade-off between accuracy and simplicity.” Evaluate this statement
                                              sanchopu
                                              FARMACOLOGÍA DE LOS ANESTÉSICOS LOCALES
                                              María Rivas
                                              PROPERTIES OF MATTER
                                              Escolapios Albacete
                                              Calculus
                                              L. Eastman
                                              REALISMO JURÍDICO CLÁSICO
                                              Julián Murcia
                                              Adverbs: Modifi verbs, adjetives or another advebs
                                              Sthyff Sammet Santa
                                              Verb To Be
                                              Julie Basto
                                              Sequences and Series
                                              L. Eastman
                                              contextualización de la educación inclusiva y con calidad
                                              carolina Galindo