Espacios Vectoriales

Description

espacios vectoriales , teoremas y subconjuntos
Ariana Alvarado
Mind Map by Ariana Alvarado, updated more than 1 year ago
Ariana Alvarado
Created by Ariana Alvarado almost 3 years ago
6
0

Resource summary

Espacios Vectoriales
  1. Def. Sea V un conjunto no vacío sobre el cual existen dos operaciones. Una llamada suma de vectores y otra llamada multiplicación de un escalar por un vector.
    1. Se clasifican en:
      1. La suma de vectores, o simplemente suma, es una regla o función que asocia a dos vectores, digamos u y v un tercer vector, a este se le representará como u ⊕ v.
        1. La multiplicación es una regla que asocia a un escalar y a un vector, digamos c y u un segundo vector representado por c ⊙ u. Diremos que el conjunto V se llama espacio vectorial si cumple todos y cada uno de los siguientes axiomas
          1. Axiomas:
            1. 1.Axioma de cerradura bajo la suma u ⊕ v ∈ V
              1. 2.Axioma de la conmutatividad de la suma u ⊕ v = v ⊕ A
                1. 3.Axioma de la asociatividad de la suma u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w
                  1. 4.Axioma de la existencia del elemento neutro: u ⊕ 0 = 0 ⊕ u = u
                    1. 5.Axioma de la existencia de inversos aditivos u ⊕ (−u) = (−u) ⊕ u = 0
                      1. 6.Axioma de cerradura bajo la multiplicación por escalares: c ⊙ u ∈ V
        2. Teoremas sobre espacios vectoriales
          1. Sea V es un espacio vectorial, y sean u ∈ V y c ∈ R, entonces
            1. 1. 0 u = 0 (El escalar 0 por cualquier vector da el vector cero)
              1. 2. c 0 = 0 (Cualquier escalar por el vector cero da el vector cero)
                1. 3. c u = 0 implica c = 0 ´o u = 0 (Cuando el producto de un escalar por un vector da el vector cero, o el escalar es cero o el vector es el vector cero)
                  1. 4. (−c) u = − (c u) (Multiplicar por un escalar negativo implica obtener el inverso aditivo del producto del escalar sin el signo por el vector)
          2. Subespacio Vectorial
            1. Def. Sea V = (V, +, ·) un espacio vectorial. Un subconjuto U de V (U ⊆ V ) que no es vacío se dice subespacio vectorial o simplemente subespacio de V si U con las mismas operaciones de suma y multiplicación por escalares que están definidas en V , pero restringidas vectores de U , es un espacio vectorial
              1. Teorema Un subconjunto no vacío U de un espacio vectorial V es subespacio de V si cumple las siguientes condiciones:
                1. 1.El conjunto U es cerrado bajo la suma; Cualquiera dos elementos de U sumados dan como resultado un elemento que tambien está en U
                  1. 2.El conjunto U es cerrado bajo la multiplicación por escalares; Cualquier elemento de U multiplicado por cualquier escalar da como resultado un elemento que tambien está en U.
            Show full summary Hide full summary

            Similar

            Product Design
            adamwood451
            Edexcel IGCSE Business Studies Key terms Ch 1-9
            minsung.kang
            Tess of the D'Urbevilles critical quotes
            Magdalena Kolodziej
            Veterinary Nursing Instruments
            rowan.bray
            B3, C3, P3
            George Moores
            Anatomical terminology - Axial Skeleton
            celine_barbiersg
            Medical Terminology
            khachoe_pema
            Othello Quotes
            georgia2201
            SFDC App Builder (76-100)
            Connie Woolard
            VO QUALI uni wien
            Jules D