"DISTRIBUCIONES DE PROBABILIDAD"

Descrição

La distribución Normal es la distribución continua más importante del Cálculo de Probabilidades y de la Estadística. Aparece por primera vez en 1733 en los trabajos de DE MOIVRE relativos al cálculo de la distribución límite de una variable binomial. Posteriormente, en 1809, GAUSS y más tarde, en 1812,
JOSE ANTONIO ALVIRO MORENO
FlashCards por JOSE ANTONIO ALVIRO MORENO, atualizado more than 1 year ago
JOSE ANTONIO ALVIRO MORENO
Criado por JOSE ANTONIO ALVIRO MORENO aproximadamente 6 anos atrás
10
0

Resumo de Recurso

Questão Responda
Distribución normal. De modo riguroso, se dice que una variable aleatoria sigue una distribución normal de media µ, y desviación típica σ, y se designará por N(µ, σ), si se cumplen las siguientes condiciones: La variable recorre toda la recta real, y la función de densidad es de la forma: f(x) = 1 ! 2" e # 1 2 ( x# µ ! )2 donde e = 2.71828; π= 3.14159; µ es la media de la distribución y σ es la desviación típica.
La distribución normal estándar N(0,1) En las familias representadas por las distribuciones normales ocupa un lugar especial la distribución que tiene de media cero (µ = 0) y por desviación típica la unidad (σ = 1). Esta distribución se llama la distribución normal estándar, o reducida. Su función de densidad es: f(x) = 1 2! e " x2 2 x #("$,+$) y su función de distribución es la siguiente: F(x) = P(! " x) = 1 2# e $ x2 2 dx
Tipificación de la variable 1º Centrar, es decir, trasladar la media de la distribución al origen de coordenadas, lo que equivale a hacer µ = 0. 2º Reducir la desviación típica a 1, que equivale a dilatar o contraer la gráfica de la distribución hasta que coincida con la gráfica de la función normal estándar.
Propiedades de la distribución normal SUMA O RESTA DE VARIABLES NORMALES Si X1 es una variable que se distribuye normalmente N(µ1, σ1), y X2 es otra variable que se distribuye normalmente N(µ2, σ2). Entonces la variable X = X1 ± X2 sigue también una distribución normal con media µ = µ1 ± µ2, y cuya varianza es σ2 = σ1 2+ σ22. Es decir, la variable X sigue una distribución N(µ1 ± µ2 , !1 2 + !2 2 )
Modelo Chi-cuadrado (de Pearson Es una variable obtenida al sumar los cuadrados de n variables aleatorias normales estándar, independientes entre sí. Recibe el nombre de χ2n de PEARSON, con n grados de libertad, o sea, χ2n = Z12 + Z22 + ..... + Zn 2 siendo cada Zi una variable normal N(0,1), e independientes
Distribución t de Student Se define la variable "t" de STUDENT con n grados de libertad como t n = ! !1 2 + !2 2 +!+!n 2 n También puede definirse a través de una variable Z normal estándar N(0,1), y una variable χ2 que siga una distribución Chi-cuadrado con n grados de libertad; se define entonces la variable "t" de STUDENT con n grados de libertad como t n = Z !n 2 n
Distribución "F" de FisherSnedecor Se define la variable F de Snedecor (o de Fisher-Snedecor), la definida por F = X n Y m denominada distribución F de Fisher-Snedecor con n y m grados de libertad

Semelhante

verbos irregulares
santosfilipe123
Didática com Mapa Mental Online
Alessandra S.
Estilos de redação para concursos
Alessandra S.
Preposições em inglês
GoConqr suporte .
Como fazer Mapas Mentais
Marina Faria
Revisão
Vanessa Bolina
Avaliação de Alunos
Alessandra S.
Cálculo estequiométrico
Alice Sousa
Quiz sobre Freud
Yasmin Padovan
Sistema Nervoso
Marília Mendes
Escala de Coma de Glasgow
Vanessa Palauro