Ableitungen

Descrição

Gängige Ableitungen aus der Differentialrechnung.
sabasta
FlashCards por sabasta, atualizado more than 1 year ago
sabasta
Criado por sabasta quase 9 anos atrás
25
3

Resumo de Recurso

Questão Responda
\[f(x)=a^x\] \[ f'(x)=a^x \cdot \ln a \]
\[ f(x)=\sin x \] \[ f'(x)=\cos x \]
\[ f(x)=\cos x \] \[ f'(x)=-\sin x \]
\[ f(x)=C \cdot g(x) \] \[ f'(x)=C \cdot g'(x) \]
\[ f(x)=[g(x)]^n \] \[ f'(x)=n \cdot [g(x)]^{n-1} \cdot g'(x) \]
\[ f(x)=e^x \] \[ f'(x)=e^x \]
\[ f(x)=e^{g(x)} \] \[ f'(x)=e^{g(x)} \cdot g'(x) \]
\[ f(x)=\sin g(x) \] \[ f'(x)=\cos g(x) \cdot g'(x) \]
\[ f(x)=\cos g(x) \] \[ f'(x)=-\sin g(x) \cdot g'(x) \]
\[ f(x)=\tan x \] \[ f'(x)=\frac{1}{cos^2 \cdot x} \]
\[ f(x)=\ln x \] \[ f'(x)=\frac{1}{x} \]
\[ f(x)=\ln g(x) \] \[ f'(x)=\frac{g'(x)}{g(x)} \]
\[ f(x)=log_a g(x) \] \[ f'(x)=\frac{g'(x)}{g(x) \cdot \ln a} \]
\[ f(x)=log_a x \] \[ f'(x)=\frac{1}{x \cdot \ln a} \]
\[ f(x)=a^{g(x)} \] \[ f'(x)=a^{g(x)} \cdot \ln a \cdot g'(x) \]
Kettenregel \[ f(x)= f(g(x)) \] \[ f'(x)=f'(g) \cdot g'(x) \]
Produktregel \[ f(x)=u(x) \cdot v(x) \] \[ f'(x)=u'(x) \cdot v(x) + u(x) \cdot v'(x) \]
Summenregel \[ f(x)=u(x) \pm v(x) \] \[ f'(x)=u'(x) \pm v'(x) \]
Quotientenregel \[ f(x)=\frac{u(x)}{v(x)} \] \[ f'(x)=\frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2} \]

Semelhante

Mathe Quiz
JohannesK
Statistik Theorie
Clara Vanessa
Mathe Themen
barbara91
Stochastik
barbara91
Mathe Themen Abitur 2016
henrythegeek
Vektorendefinition
Sinan 2000
Funktionen Einführung und Geradenfunktionen
Tahir Celikkol
Stochastik
elouasdi98
Themen der Vektorrechnung
Paula Raithel
Geometrie
Tahir Celikkol
Grundlagen der Stochastik - Zusammenfassung
Flo Rian