Ley de composición externa

Descrição

Mapa Mental sobre Ley de composición externa, criado por jorgenaranjo1989 em 19-10-2014.
jorgenaranjo1989
Mapa Mental por jorgenaranjo1989, atualizado more than 1 year ago
jorgenaranjo1989
Criado por jorgenaranjo1989 aproximadamente 10 anos atrás
465
0

Resumo de Recurso

Ley de composición externa
  1. En símbolos
    1. es ley externa en A con operadores en B ⇔ Bx A → A es decir, si b B ∈ y a A ∈ la imagen del par (b ; a) = b ∗ a ∈ A
      1. Según las propiedades que deban satisfacer estas leyes de composición, se tienen los distintos tipos de estructuras ó sistemas axiomáticos.
        1. Monoide
          1. El par (A , ∗ ) donde A es un conjunto no vacío dotado de una operación ó ley de composición interna ∗ se denomina monoide.
            1. Ejemplos de monoides
              1. ( N , + ) , ( Z , + ) , ( Q , + ) , son monoides. ( N , - ) no es un monoide porque la sustracción no es ley de composición interna en N. ( N , ∗ ) donde ∗ está definido como a ∗ b = máx.{a , b} es un monoide.
          2. Semigrupo
            1. Un monoide asociativo se denomina semigrupo.
              1. Si la ley de composición interna también es conmutativa se llama semigrupo conmutativo. Si existe el elemento neutro se dice que es un semigrupo con unidad ó semigrupo con identidad. El elemento neutro de llama identidad.
                1. Ejemplos de semigrupos ( N , + ) es un semigrupo conmutativo sin elemento neutro. ( N 0 , + ) es un semigrupo conmutativo con elemento neutro, el 0. ( N , • ) es un semigrupo conmutativo con elemento neutro ó identidad igual a 1.
            2. Grupo
              1. Sea el par (A , ∗ ) , donde A es un conjunto no vacío dotado de una ley de composición interna binaria
                1. (A , ∗ ) es un grupo ó se define sobre A una estructura de grupo sí: a) ∗ es asociativa. Es decir a ∀ , b ∀ , c ∀ : a, b, c ∈ A ⇒ ( ) ( ) a b c a b c ∗ ∗ = ∗ ∗ b) ∗ posee elemento neutro en A. Es decir e A ∃ ∈ / a ∀ , si a A ∈ ⇒ a e e a a ∗ = ∗ = c) Todo elemento de A es invertible en A respecto de ∗ . Es decir a A ∀ ∈ , a ´ A ∃ ∈ / a a ´ a ´ a e
              2. Grupo Abeliano ó Grupo conmutativo
                1. es cuando además de ser un grupo, d) ∗ es conmutativa. Es decir a ∀ , b ∀ : a, b ∈ A a b b a ⇒ ∗ = ∗ Si G = (A , ∗ ) es un grupo, se dice que es un grupo finito si el conjunto A es finito y su cardinal se llama orden del grupo.
                  1. Ejemplos 1) El par ( Z , ∗ ) donde Z es el conjunto de los números enteros y ∗ es una operación definida como a ∗ b = a + b + 3 forma un grupo abeliano. Comprobación: ∗ es una ley de composición interna en Z pues si a y b ∈ Z , a + b + 3 ∈ Z ∗ es asociativa pues ( ) a b c ∗ ∗ = (a + b +3) ∗ c = a + b +3 + c +3 = a + b + c + 6 y ( ) a b c ∗ ∗ = a ∗ (b + c + 3) = a + b + c + 3 + 3 = a + b + c + 6 ∗ tiene elemento neutro e = –3 , pues a A ∀ ∈ , a ∗ e = a entonces a + e +3 = a ⇒ e = –3 y e ∗ a = a entonces e + a + 3 = a ⇒ e = –3 tiene inverso a , a / a a e ′ ′ ∀ ∃ ∗ = , en nuestro caso a a′ ∗ = –3 ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a derecha a a 3 ′ ∗ = − ⇒ a a 3 ′ + + = –3 luego a´ = – a – 6 es inverso a izquierda ∗ es conmutativa pues a b ∗ = a + b + 3 = b + a + 3 = b a
                    1. Otros ejemplos: 1 ) ( Z , + ) ; ( Q , + ) ; ( R , + ) y ( C , + ) Son grupos abelianos . También se llaman grupos aditivos debido a la operación aditiva. 2 ) ( N , + ) No es grupo. No tiene neutro ni inverso de cada elemento. 3 ) ( N 0 , + ) No es grupo. Tiene neutro, el 0 , pero no tiene inverso aditivo. 4 ) ( Q , • ) No es grupo, el 0 no tiene inverso multiplicativo. 5 ) ( R , • ) No es grupo, el 0 no tiene inverso multiplicativo. 6 ) ( Q – { 0 } , • ) y ( R – { 0 } , • ) Son grupos.

          Semelhante

          Paulo Freire Pedagogia da Autonomia
          lb.roberto
          Tabuada
          Alessandra S.
          Espanhol Básico
          Alessandra S.
          Figuras de Linguagem
          Mah1408
          Princípios Direito Penal
          Carlos Moradore
          Literatura Brasileira
          Alessandra S.
          Glossário de Biologia
          GoConqr suporte .
          INFORMÁTICA
          PAULA LEOCÁDIO
          Plano de estudos ENEM - Parte 1 *Humanas
          Alice Sousa
          Estatuto dos militares - Exercício 2
          Ibsen Rodrigues Maciel
          Contextualização da Aula 3 - Tecnologia na Formação Profissional - SAÚDE
          Fabrícia Assunção