Calculus

Descrição

Mapa Mental sobre Calculus, criado por Truong Anh Nguye em 17-06-2016.
Truong Anh Nguye
Mapa Mental por Truong Anh Nguye, atualizado more than 1 year ago
Truong Anh Nguye
Criado por Truong Anh Nguye mais de 8 anos atrás
35
2

Resumo de Recurso

Calculus
  1. Linear algebra
    1. Matrices
      1. Special matrices
        1. Square matrices
          1. Triangular matrices
            1. Diagonal matrices
              1. Identity matrices
                1. Null matrices
                2. Transposed matrices
                  1. 3 elementary row operations
                    1. Interchanging 2 rows
                      1. Adding a multiple of 1 row to another
                        1. Multiplying a row by a nonzero scalar
                        2. Basic operations
                          1. Addition, Subtraction
                            1. Scalar multiplying
                              1. Matrix multiplying
                                1. 5 properties
                                  1. AB = BA
                                    1. A(B+C) = AB + AC
                                      1. A(BC) = (AB)C
                                        1. A + 0 = A
                                          1. A.I = A
                                      2. Dterminants and the inverse matrix
                                        1. 7 Properties
                                          1. |A| = |A |
                                            1. Interchanging 2 rows or 2 columns => |B| = -|A|
                                              1. 2 identical rows or columns => D = 0
                                                1. 1 row/column is a multiple of the other row/column => |A| = 0
                                                  1. x any row/column by a => x D by a
                                                    1. x every elements by a => x D by a times n
                                                      1. |AB| = |A||B|
                                                      2. Inverse matrix
                                                        1. A is an invertible matrix <=> |A| = 0
                                                          1. A = adj(A)/|A|
                                                        2. Systems of linear equations
                                                          1. Cramer system
                                                            1. Using inverse matrix
                                                              1. Applications of the system linear equations
                                                                1. Equilibrium in goods market
                                                                  1. IS - LM model
                                                                    1. Input - output model
                                                                2. Function of 1 variable
                                                                  1. A function is increasing if : V x1, x2 C D : x1<x2 => f(x1)>f(x2)
                                                                    1. A function is decreasing if : V x1, x2 C D : x1<x2 => f(x1)<f(x2)
                                                                      1. Some functions in economic
                                                                        1. TC = a + bQ
                                                                          1. Q = a + bP
                                                                            1. Q = c + dP
                                                                              1. y = p(x)/q(x)
                                                                                1. TR = pQ
                                                                                2. Limits and continuity
                                                                                  1. As x approaches a, the limit of f(x) is the L if the limit from the left and right exist and both lim are L
                                                                                    1. Lim f(x) = Lim f(x) = L => Lim f(x) = L
                                                                                    2. y is continuous at x=a if
                                                                                      1. f(a) exists
                                                                                        1. Lim f(x) exists
                                                                                          1. Lim f(x) = f(a)
                                                                                        2. Derivatives
                                                                                          1. Find min, max values
                                                                                            1. x is a critical value of f(x)
                                                                                              1. x0 C D and f'(x0) = 0
                                                                                                1. x0 C D and f'(x0)
                                                                                                2. f(c) is a relative min value
                                                                                                  1. f'(c) = 0 and f''(c) > 0
                                                                                                  2. f(c) is a relative max value
                                                                                                    1. f'(c) = 0 and f''(c) <0
                                                                                                  3. Application
                                                                                                    1. Average function
                                                                                                      1. Ay = F(x)/x
                                                                                                      2. Marginal function
                                                                                                        1. My = f'(x)
                                                                                                          1. My(x0) = f'(x0) ; at x = x0 when increases 1 unit then y increases f'(x0) unit
                                                                                                          2. Elasticity
                                                                                                            1. E = D'(p) P/D(p)
                                                                                                              1. At P = a when price increases 1% then demanded quantity increases E%
                                                                                                        2. Integration
                                                                                                          1. Improper integral
                                                                                                            1. If the lim exists, then the improper integral converges
                                                                                                              1. If the lim doesn't exists, then the improper integral diverges
                                                                                                            2. Functions of several variables
                                                                                                              1. Finding partial derivatives
                                                                                                                1. 1) Consider the function x.y
                                                                                                                  1. 2) Suppose that y is fixed
                                                                                                                    1. 3) Take the first derivative with respect to x
                                                                                                                    2. Second-order partial derivatives
                                                                                                                      1. Hessian matrix
                                                                                                                          1. Negative definite (concave down)
                                                                                                                            1. D1 = a11 > 0 and D2 = |A| < 0
                                                                                                                            2. Positive definite (concave up)
                                                                                                                              1. D1 = a11 > 0 and D2 = |A| > 0
                                                                                                                        1. Derivatives of implicit function
                                                                                                                          1. y'(x) = - F'(x)/F'(y)
                                                                                                                          2. Maximum - minimum problems z = f(x,y)
                                                                                                                            1. 1) Find f'x, f'y, f''xx, f''xy, f''yy, f''yx
                                                                                                                              1. 2) Solve f'x=0 ; f'y=0. (a,b) represent the solution
                                                                                                                                1. 3) D= f''xx.f''yy-f''xy.f''yx
                                                                                                                                  1. 4) Then
                                                                                                                                    1. a/ has a max at (a,b) if D>0 ; f''xx<0
                                                                                                                                      1. b/ has a min at (a,b) if D>0 ; f''xx>0
                                                                                                                                        1. c/ has neither at (a,b) if D<0
                                                                                                                                          1. d/ isn't aplication if D=0

                                                                                                                                      Semelhante

                                                                                                                                      Limits AP Calculus
                                                                                                                                      lakelife62
                                                                                                                                      Basic Derivative Rules
                                                                                                                                      Bill Andersen
                                                                                                                                      Calculus
                                                                                                                                      natz994
                                                                                                                                      Integration Techniques
                                                                                                                                      Rob Grondahl
                                                                                                                                      Techniques of Integration
                                                                                                                                      hamidymuhammad
                                                                                                                                      Calculus II Improper Integrals
                                                                                                                                      Anthony Campos
                                                                                                                                      Series Strategy
                                                                                                                                      Rob Grondahl
                                                                                                                                      STRATEGY OF INTEGRATION
                                                                                                                                      intan_syahirah97
                                                                                                                                      Derivadas
                                                                                                                                      Roxy Hughes
                                                                                                                                      Mathematicalproving
                                                                                                                                      Sharifah Huda
                                                                                                                                      wodb #2 Calculus
                                                                                                                                      Susan Robinson