4.4 - Wave Characteristics

Descrição

Physics HL (4 - Simple Harmonic Motion and Waves) Mapa Mental sobre 4.4 - Wave Characteristics, criado por wondersnail em 22-03-2014.
wondersnail
Mapa Mental por wondersnail, atualizado more than 1 year ago
wondersnail
Criado por wondersnail mais de 10 anos atrás
52
3

Resumo de Recurso

4.4 - Wave Characteristics
  1. 4.4.1
    1. Wave pulse- a single, instant crest?
      1. Continous wave- A wave of constant amplitude and frequency; the wave goes up and down forever (unless damped!)
      2. 4.4.3
        1. Transverse wave- A wave in which the direction of disturbance is perpendicular to the direction of travel
          1. Example: Wave in a string
          2. Longitudinal wave- A wave in which the direction of disturbance is parallel to the direction of travel
            1. Example: Wave in a spring
          3. 4.4.2
            1. Progressive waves transfer energy.
            2. 4.4.4
              1. Wavefront- a line joining all point in a wave that are in phase
                1. Ray- lines drawn to show the direction of the wave, perpendicular to the wavefront
                2. 4.4.5
                  1. Crest- maximum positive displacement from equilibrium position. Top of the wave
                    1. Trough- maximum negative displacment from equilibrium position. Bottom of the wave
                      1. Compression- pushing together of a longitudinal wave, increased frequency, decreased wavelength
                        1. Rarefaction- spreading out of the longitudinal wave, decreasing frequency, increased wavelength
                        2. 4.4.6
                          1. Wavelength- distance between two consecutive points of a wave that are in phase
                            1. Wave speed- distance travelled by the wave profile per unit time
                              1. Intensity- Power transferred by a wave per unit area
                              2. 44.8
                                1. If frequency is f, the time taken for a wave to pass one cycle is 1/f.
                                  1. Velocity = distance over time
                                    1. The distance moved in one cycle is one wavelength
                                      1. So the velocity of a wave is the wavelength divided by 1/f, which is equal to the wavelength times the frequency
                                2. 4.4.9
                                  1. All electromagnetic waves thravel with the same wave speed in free space!

                                  Semelhante

                                  4.1 - Kinematics of SHM
                                  wondersnail
                                  4.10 - Polarisation
                                  wondersnail
                                  4.2 - Energy changes during SHM 4.3 - Forced Oscilliations and Resonance
                                  wondersnail
                                  4.7 - The Doppler Effect
                                  wondersnail
                                  4.6 - Standing waves
                                  wondersnail
                                  4.5 - Wave Properties
                                  wondersnail
                                  6.1 Gravitational Forces and Fields
                                  wondersnail
                                  6.2 - Gravitational Potential
                                  wondersnail
                                  Mechanics
                                  sunda7428
                                  12.1 - The nature of EM waves
                                  wondersnail
                                  SLHL Terms
                                  Tadeas