null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
734322
Statistical Physics
Descrição
Graduação Thermodynamics & Stat. Physics Mapa Mental sobre Statistical Physics, criado por eg612 em 08-04-2014.
Sem etiquetas
thermodynamics & stat. physics
thermodynamics & stat. physics
graduação
Mapa Mental por
eg612
, atualizado more than 1 year ago
Mais
Menos
Criado por
eg612
mais de 10 anos atrás
214
1
0
Resumo de Recurso
Statistical Physics
Definitions
Macrostate: description of a thermodynamic system using macroscopic variables
Microstate: full description of system
Many microstates can correspond to the same macrostate
Fundamental postulate of Stat. Physics: every microstate has the same probability
If 2 systems A & B are merged:
Total entropy is extensive => S_AB = S_A + S_B
=> Boltzmann's Entropy: S = k_b ln(omega)
Total number of microstates of AB
Distinguishable particles: solids
Isolated: microcanonical ensemble
Statistical weight
Need to maximise entropy S with constraints: ∑E_j*n_j=U and ∑n_j=N
Lagrange multipliers
Define partition function z = ∑e^(-βE_j)
Specify α from number of particles and partition function
Add dQ and equate to dU to find β= 1/k_B*T
n_j = (N/z)*e^(-E_j/(k_B*T))
Degeneracy g_j:
g_j multiplies Boltzmann factor
Closed: Canonical ensemble
Anotações:
Heat baths: heat can leave or enter. e.g. Glass of water, single atom in solid. T is constant
Gibbs entropy: S = -k_B*∑p_j*ln(p_j)
Can use z to link to thermodynamics
Expressing U in terms of z: U=-N(d(ln(x))/d(β))
1D SHO
Expressions for U at high and low T regimes
Bridge equation: F = -N*k_B*T*ln(z_1)
Use z to derive thermodynamic properties
Open: Grand canonical ensemble
Maximise Gibbs' entropy with constraints on N, P and U
Grand Partition Function Z: (Ej-uN) instead of Ej
Can write Gibbs' entropy in terms of U, N, T and F
F links to Thermodynamics
Indistinguishable particles: gases
Classical gases (dilute): g_J >> n_j
Density of states
Partition function of classical gas
For indistinguishable particles: Z_n = Z_1^N/N!
Maxwell-Boltzmann distribution describes occupancy: f(E) = A*e^(-E/k_B*T)
Maxwell-Boltzmann distribution of speeds: n° part's with velocity v: n(v)*dv = f(v)*g(v)*dv
Statistical weight of classical gases
Anotações:
product((g_j^(n_j))/n_j!)
Quantum gases
Fermi gas
Statistical weight for Fermi gas
Anotações:
omega = product(g_j!/n_j!(g_j-n_j)!)
Maximise at constant U and N to get expression for n_j
Probability distribution is n_j/g_j = FD distribution = 1/(1+e^((E-u)/kT)
Pauli's exclusion principle
Degenerate Fermi gas:
Fermi E: E_F = u at T=0
Fermi T: T_F = E_F/k_B
Bose-Einstein gas
Statistical weight for Boson gas
Anotações:
omega = product((n_j+g_j-1)!/(n_j!*(g_j-1)!) which is approximately product(n_j+g_j)!/(n_j!*g_j!)
maximise ln(omega) at constant U and N to get
Bose-Einstein distribution: f_BE = 1/((e^((E-u)/kT)-1)
Photon gas: no chemical potential
Energy spectral density: u = E*g(w)*f(w)*dw
Anotações:
E = h_bar w. g(w)dw = V/(2pi)^3 * 4*pi*k^2 dw f(w) = 1/(e^(h_bar*omega/kT)-1)
Planck's law of radiation (u(v))
Energy flux: V*integral(u(v)*dv) * c * 1/4
Anotações:
Note: integral for u gives pi^4/15
Stefan-Boltzmann law: enery flux = sigma*t^4
Bose-Einstein condensation
At T=0
n_0 is large => u goes to 0
n' is proportional to T^(3/2)
Anotações:
And n'/N = (T/T_B)^(3/2), where T_B is Bose Temperature
At T_B all particles are in excited state
At T_B, average distance between particle is comparable to De Broglie wavelength
Wavefunctions of atoms overlap => single wavefunction describing the whole system: condensate
Both quantum gases reduce to classical gas if very dilute: g_j >> n_j
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Thermodynamics
eg612
Thermodynamics
Mayesha Fairuz
Português - 3 - Ortografia e acentuação
glenerdourado
Interpretação de Texto
Renata Luana
Tipos de Textos
Larissa Borela
Geometria Plana Triângulo
Luiz Antonio Lopes
Processo Civil
Marcela Martins
Regime Jurídico Único - 8.112/90 (QUADRO RESUMO)
Clara Fonseca
10 Passos para elaboração de TCC
IaraNeres
PLANO DE NEGÓCIOS
Einstein Menezes
Contextualização da Aula 4 - Gestão - Administração da Carreira Profissional
Fabrícia Assunção
Explore a Biblioteca