NBT Toets 6

Descrição

NBT toets om te help.
Rika Grobler
Quiz por Rika Grobler, atualizado more than 1 year ago
Rika Grobler
Criado por Rika Grobler aproximadamente 9 anos atrás
126
1

Resumo de Recurso

Questão 1

Questão
Rangskik/ Order \(\sqrt[3]{7}\) , \(\sqrt{5}\), \(\sqrt[4]{17}\) van klein na groot/ from small to big:
Responda
  • \(\sqrt[3]{7}\) , \(\sqrt{5}\), \(\sqrt[4]{17}\)
  • \(\sqrt{5}\), \(\sqrt[3]{7}\) , \(\sqrt[4]{17}\)
  • \(\sqrt[4]{17}\), \(\sqrt{5}\), \(\sqrt[3]{7}\)
  • \(\sqrt[3]{7}\) , \(\sqrt[4]{17}\) , \(\sqrt{5}\)

Questão 2

Questão
'n Kubus met sy-lengte 5cm word geverf. Daarna word dit in kubusse met sy-lengte 1 cm gesny. Die hoeveelheid sye wat NIE geverf is nie, is A cube with side length 5cm is painted. Then it is cut into cubes with side length 1 cm. The amount of sides that are NOT painted is
Responda
  • 100
  • 450
  • 600
  • 1250

Questão 3

Questão
Die hoeke van 'n kubus word afgesny. Hoeveel sy-lyne het die vorm wat so ontstaan? The corners of a cube are cut off. How many side-lines does the shape that have arisen have?
Responda
  • 12
  • 36
  • 44
  • 48

Questão 4

Questão
Die definisie van 'n skrikkeljaar is as volg: Dit is 'n skrikkeljaar indien die jaar deelbaar deur 4 is, soos 1980. Indien dit 'n eeu-jaar is, moet die jaar deelbaar deur 400 wees. 1200 was bv. 'n skrikkeljaar, maar nie 1300 nie. Bereken hoeveel skrikkeljare daar vanaf 1892 tot 2012, beide ingesluit, was. The definition of a leap year is as follows: It is a leap year if the year is divisible by 4, such as 1980. If it is a century, the year must be divisible by 400. 1200 was e.g. a leap year, but not 1300. Calculate how many leap years there were from 1892 to 2012, both included.
Responda
  • 29
  • 30
  • 31
  • 32

Questão 5

Questão
Piet en Jan begin beide op dieselfde plek, O, fiets te ry. Piet ry teen 20km/h in 'n rigting 40° Oos van Noord. Jan ry teen 16 km/h in 'n rigting 20° Wes van Noord (sien skets). Watter antwoord is die beste skatting van die afstand tussen hulle na ½ uur? Pete and John both start cycling in the same place, Oh. Pete drives at 20km / h in a direction 40 ° East of North. John is traveling at 16 km / h in a direction 20 ° West of North (see sketch). Which answer is the best estimate of the distance between them after ½ hour?
Responda
  • 9,2
  • 12,8
  • 11,1
  • 10

Questão 6

Questão
A, B en C is in dieselfde horisontale vlak en DC is 'n vertikale toring op die horisontale vlak. Die sye en hoeke is soos aangetoon in die skets. Dan is \(h\) = A, B and C are in the same horizontal plane and DC is a vertical tower on the horizontal plane. The sides and angles are as shown in the sketch. Then \(h\) =
Responda
  • \(\frac{1}{2cos^2\theta}\)
  • \(\frac{tan\theta}{2cos^2\theta}\)
  • \(\frac{\sqrt{3}}{2cos^2\theta}\)
  • \(\frac{tan\theta}{2sin\theta}\)

Questão 7

Questão
Die funksie gedefinieer deur/ The function defiined by \(f(x)=-2x^2-8x+17\) het ’n/ has a
Responda
  • minimum \(y\)-waarde en ’n negatiewe \(y\)-afsnit/ minimum \(y\)-value and a negative \(y\)-intercept
  • maksimum \(y\)-waarde en ’n positiewe \(y\)-afsnit/ maximum \(y\ value and a positive \(y\ intercept
  • minimum \(y\)-waarde en ’n positiewe \(y\)-afsnit/ minimum \(y\)-value and a positive \(y\)-intercept
  • maksimum \(y\)-waarde en ’n negatiewe \(y\)-afsnit/ maximum \(y\ value and a negative \(y\ intercept

Questão 8

Questão
Die draaipunt van die funksie gedefinieer deur \(f(x)=-2x^2-8x+17\) is het 'n draaipunt by The turning point of the function defined by \(f(x)=-2x^2-8x+17\) has a turning point at
Responda
  • (-4; 81)
  • (-4; 17)
  • (-2; 41)
  • (-2; 25)

Questão 9

Questão
Die uitdrukking/ The expression \(\sqrt{-x^2+6x-5}\) het ’n/ has a
Responda
  • maksimum waarde van 4/ maximum value of 4
  • maksimum waarde van 2/ maximum value of 2
  • minimum waarde van \(\sqrt{17}\) / minimum value of \(\sqrt{17}\)
  • minimum waarde van \(\sqrt{41}\)/ minimum value of \(\sqrt{41}\)

Questão 10

Questão
Die grafiek van \(y=-2x^2-8x+17\) word gereflekeer in die x-as en daarna in die y-as. Die vergelyking van die grafiek wat so ontstaan is The graph of \(y=-2x^2-8x+17\) is reflected in the x-axis and then in the y-axis.The equation of the graph that is formed by this is
Responda
  • \(f(x)=-2x^2-8x-17\)
  • \(f(x)=-2x^2+8x+17\)
  • \(f(x)=2x^2-8x-17\)
  • \(f(x)=2x^2+8x+17\)

Questão 11

Questão
As/ If \(-1<x<0\), watter getal is die kleinste/ which number is the smallest?
Responda
  • \(\frac{10}{x}\)
  • \(x\)
  • \(\frac{x}{20}\)
  • \(x\times 10^{-2}\)

Questão 12

Questão
\(cos23°sin43°-cos43°sin23° = \)
Responda
  • \(sin⁡(-20°)\)
  • \(sin20°\)
  • \(cos⁡(-20°)\)
  • \(cos⁡(20°)\)

Questão 13

Questão
ABCD is ’n vierkant met sy-lengte \((x-1)\) cm. Die oppervlakte van reghoek ABFE=\((x^2+x-2)\) cm2. FC = .... cm. ABCD is a square with side length \((x-1)\) cm. The area of ​​rectangle ABFE = \((x^2+x-2)\) cm2. FC =... cm
Responda
  • \(x\)
  • 2
  • 3
  • 4

Questão 14

Questão
Die hoogtehoek na die top van ’n toring A vanaf die top van toring B is 30°. Die dieptehoek na die voet van toring B vanaf die top van toring A is 60 °. Toring B is 100 m hoog. Die voet van A en B is op dieselfde horisontale hoogte. Die hoogte van toring A is The angle of elevation to the top of a tower A from the top of tower B is 30 °. The angle of depth to the foot of tower B from the top of tower A is 60 °. Tower B is 100 m high. The foot of A and B is at the same horizontal height. The height of tower A is
Responda
  • 60
  • \(60\sqrt{3}\)
  • 75
  • \(75\sqrt{3}\)

Questão 15

Questão
Die skets stel ’n vierkantige kubus, sy-lengte a met ’n sirkelopening bo. Die deursnee van die opening is gelyk aan die helfte van die diagonaal AB. Die buite-oppervlakte van die boks is The sketch depicts a square cube, side length a with a circular opening. The diameter of the opening is equal to half of the diagonal AB. The surface area of ​​the box is
Responda
  • \(6a^2-\frac{\pi a^2}{4}\)
  • \(6a^2-2\pi a^2\)
  • \(6a^2-\frac{\pi a^2}{8}\)
  • \(6a^2-\frac{\pi a^2}{2}\)

Questão 16

Questão
Die volume van 'n reghoekige kubus is gelyk aan 1000 \(m^3\). Die lengte, breedte en wydte word vergroot met 50%. Die volume vergroot met The volume of a rectangular cube is equal to 1000 \(m^3\). The length, width and width are increased by 50%. The volume increases by
Responda
  • 50%
  • 25%
  • 12,5%
  • 10%

Questão 17

Questão
'n Ogief word getoon. Jy kan die gebruik om die volgende te bepaal: die An ogive is shown. You can use it to determine the following: the
Responda
  • gemiddeld/ average
  • variansie/ variance
  • modus/ mode
  • mediaan/ median

Questão 18

Questão
As/ If \(a^2-b^2=30\) en/ and \(a-b= 5\), dan sal/ then \(a+b=\)
Responda
  • 5
  • 6
  • 35
  • 150

Questão 19

Questão
'n Sirkel met middelpunt (1; -1) gaan deur A(4; 3). Laat A die oppervlakte van die sirkel wees. Watter van die volgende is 'n goeie skatting van A: A circle with center (1; -1) passes through A (4; 3). Let A be the area of ​​the circle. Which of the following is a good estimate of A:
Responda
  • 15,5
  • 40,3
  • 78,5
  • 90,3

Questão 20

Questão
Die minimum waarde van/ The minimum value of \(1+ 2cos(4x)\) is
Responda
  • -2
  • -1
  • -5
  • -4

Semelhante

NBT Toets 5
Rika Grobler
NBT Toets 4
Rika Grobler
Wiskunde H3
Manu Mehendale
ZELFTEST §7.1
silvitahijlkema
paragraaf 7.2
silvitahijlkema
Ontbinden in factoren
silvitahijlkema
Grafische rekenmachine
Hennie de Harder
Quiz Hoofdstuk 6
Dani V
Leerstof & data Wiskunde
IrisW
Getallenleer
vanmachelen
Oplossen met ontbinden
silvitahijlkema