Experimental Design Test 3

Descrição

Master's Statistics Quiz sobre Experimental Design Test 3, criado por Jo O'Bar em 31-10-2022.
Jo O'Bar
Quiz por Jo O'Bar, atualizado more than 1 year ago
Jo O'Bar
Criado por Jo O'Bar aproximadamente 2 anos atrás
9
0

Resumo de Recurso

Questão 1

Questão
What is the difference between a 2-factor CRD and a 1-way CRD?
Responda
  • 2-factor CRD allows for simultaneous testing of 2 treatment effects in the same experiment
  • 1-factor CRD allows for simultaneous testing of 2 treatment effects in the same experiment
  • 2-factor CRD tests the average of 2 Mu's for each Eu
  • 1-factor CRD tests the average of 2 Mu's for each EU

Questão 2

Questão
Can you add nesting or blocking to a 2-factor CRD?
Responda
  • Yes
  • No

Questão 3

Questão
What are some of the advantages to using a 2-way CRD?
Responda
  • Can use fewer resources
  • Can gain efficiency in testing single factors
  • Allows you to test for interaction
  • Decreases the number of levels in each factor analysis

Questão 4

Questão
What are some of the drawbacks of using a 2-factor CRD?
Responda
  • Becomes more difficult to do based on practical limitation
  • Uses more resources
  • Loses efficiency in testing single factors
  • Can't test for interaction

Questão 5

Questão
What are the assumptions of a 2-factor CRD?
Responda
  • Independence within cells
  • Randomly Drawn Individuals within cells
  • Variances of the cells are similar
  • Normality within the cells
  • Additivity within the cells
  • Multiplicity of the cells
  • Normality of measurement units
  • Independence of measurement units
  • HOV of measurement units

Questão 6

Questão
What are the assumptions of a 3-factor CRD?
Responda
  • Independence within cells
  • Randomly Drawn Individuals in cells
  • Variances of cells are similar
  • Normality within the cells
  • Additivity within the cells
  • Multiplicity within the cells
  • Normality of measurement units
  • Independence of measurement units
  • HOV of measurement units

Questão 7

Questão
Each combination of the two factors applied at the same time is a [blank_start]cell[blank_end] containing [blank_start]experimental units[blank_end].
Responda
  • cell
  • pillar
  • block
  • experimental units
  • measurement units

Questão 8

Questão
If each cell in a two-factor CRD only contains one experimental unit, the calculations are the same as a [blank_start]Randomized Block ANOVA[blank_end], even though the designs are different.
Responda
  • Randomized Block ANOVA
  • Repeated Time Measure ANOVA
  • One-Way ANOVA

Questão 9

Questão
This is an example of a/an [blank_start]Proportional[blank_end] [blank_start]Balanced[blank_end] design. In this design, [blank_start]n-cells are the same in all cells[blank_end] and tests of cells on diagonal [blank_start]are ok[blank_end].
Responda
  • Proportional
  • Disproportional
  • Balanced
  • Unbalanced
  • n-cells are the same in all cells
  • ratios of n-cells are the same
  • ratios of n-cells are not the same
  • are ok
  • fail

Questão 10

Questão
This is an example of a/an [blank_start]Proportional[blank_end] [blank_start]Unbalanced[blank_end] design. In this design, [blank_start]n-cells are the same in all cells[blank_end] and tests of cells on diagonal [blank_start]are ok[blank_end].
Responda
  • Proportional
  • Disproportional
  • Unbalanced
  • Balanced
  • n-cells are the same in all cells
  • ratios of n-cells are the same
  • ratios of n-cells are not the same
  • are ok
  • fails

Questão 11

Questão
This is an example of a/an [blank_start]Proportional[blank_end] [blank_start]Balanced[blank_end] design. In this design, [blank_start]n-cells are the same in all cells[blank_end] and tests of cells on diagonal [blank_start]are ok[blank_end].
Responda
  • Proportional
  • Disproportional
  • Balanced
  • Unbalanced
  • n-cells are the same in all cells
  • ratios of n-cells are not the same
  • ratios of n-cells are the same
  • are ok
  • fail

Questão 12

Questão
This is the results of an example Two-Factor CRD ANOVA with Multiple Replicates. What kind of interaction is this? [blank_start]No Interaction[blank_end] Can we interpret Main Effects? [blank_start]Yes[blank_end] Would Simple Effects be of interest? [blank_start]Possibly[blank_end]
Responda
  • No Interaction
  • Interaction due to Multiplicative Data
  • Interaction due to biological process
  • Yes
  • No
  • Possibly
  • Definitely
  • Likely not
  • Yes, after a ln transformation
  • One might

Questão 13

Questão
This is the results of an example Two-Factor CRD ANOVA with Multiple Replicates. What kind of interaction is this? [blank_start]No Interaction[blank_end] Can we interpret Main Effects? [blank_start]Yes[blank_end] Would Simple Effects be of interest? [blank_start]Possibly[blank_end]
Responda
  • No Interaction
  • Interaction due to Multiplicative Data
  • Interaction due to biological process
  • Yes
  • No
  • Possibly
  • Definitely
  • Likely not
  • Yes, after a ln transformation
  • One might

Questão 14

Questão
This is the results of an example Two-Factor CRD ANOVA with Multiple Replicates. What kind of interaction is this? [blank_start]No Interaction[blank_end] Can we interpret Main Effects? [blank_start]Yes[blank_end] Would Simple Effects be of interest? [blank_start]Possibly[blank_end]
Responda
  • No Interaction
  • Interaction due to Multiplicative Data
  • Interaction due to biological process
  • Yes
  • No
  • Possibly
  • Definitely
  • Likely not
  • Yes, after a ln transformation
  • One might

Questão 15

Questão
This is the results of an example Two-Factor CRD ANOVA with Multiple Replicates. What kind of interaction is this? [blank_start]No Interaction[blank_end] Can we interpret Main Effects? [blank_start]Yes[blank_end] Would Simple Effects be of interest? [blank_start]Possibly[blank_end]
Responda
  • No Interaction
  • Interaction due to Multiplicative Data
  • Interaction due to biological process
  • Yes
  • No
  • Possibly
  • Definitely
  • Likely not
  • Yes, after a ln transformation
  • One might

Questão 16

Questão
Label the interaction graphs
Responda
  • No Interaction
  • Original Multiplicative Data
  • Multiplicative data with transformation
  • Some interaction
  • Interaction

Questão 17

Questão
Simple effects or cell means testing is usually done with the interaction effect in the Two-Factor ANOVA is _______, and interpreting main effects of column and row means does not make sense.
Responda
  • large
  • small

Questão 18

Questão
Sevearal different approaches can be used to examine simple effects. The primary differences in the approaches deal with control of ____________ and ____________ considerations
Responda
  • multiplicity
  • power
  • p-value
  • additivity

Questão 19

Questão
What "logical" sets of simple effects exist?
Responda
  • within columns
  • within rows
  • within columns and rows
  • diagonal

Questão 20

Questão
In a Two-Factor ANOVA, if interaction is large and it has been decided that the main effects cannoth be interpreted, can we ignore the two-factor design and analyze each column/row with separate One-Factor Completely Randomized ANOVAs?
Responda
  • Yes
  • No

Questão 21

Questão
Is ignoring the two-factor design and running separate One-Factor ANOVAs or t-tests more or less powerfal than constructing the simple effects tests ithin the context of the Towo-Factor ANOVA? Why?
Responda
  • Less powerful, because MS-Error and df-Error from all groups are used in the calculation for each pair.
  • Less powerful, because df increases with each One-Factor test
  • More powerful, because MS-Error and df-Error from all groups are used in the calculation for each pair.
  • More powerful, because df increases with each One-Factor test

Questão 22

Questão
Model I: [blank_start]fixed - 2 fixed factors[blank_end] Model II: random - [blank_start]2 random factors[blank_end] Model III: mixed - [blank_start]1 fixed factor, 1 random factor[blank_end]
Responda
  • fixed - 2 fixed factors
  • 2 random factors
  • 1 fixed factor, 1 random factor

Questão 23

Questão
Testing for interaction is...
Responda
  • similar change in magnitude and direction acoss treatment factor combinations
  • similar p-values in separate One-Factor ANOVA analyses

Questão 24

Questão
What are the null hypotheses of a Two-Factor Completely Randomized ANOVA with Multiple Replicates? (hint: main effects)
Responda
  • Column means are the same
  • Row means are the same
  • Interaction is not present
  • Cell means are the same
  • Interaction is present

Questão 25

Questão
What are the assumptions of a Two-Way Completely Randomized ANOVA (Model I) with Multiple Replicates?
Responda
  • data points within each cell are from randomly drawn individuals, normally distributed, and independent of one another
  • the variances of the cells are similar
  • data is additive
  • data points within the experiment are from randomly drawn individuals, normally distributed, and independent of one another
  • HOV within the experiment
  • data is multiplicative

Questão 26

Questão
What steps should be taken after the main Two-Way ANOVA?
Responda
  • Multiple Comparisons of main effects: testing for pair-wise differences between column/row means
  • Simple effects: testing for pair-wise differences in cell means within each column/row
  • Multiple Comparisons of main effects: testing for pair-wise differences within each column/row means
  • Simple effects: testing for pair-wise differences in cell means between columns/rows

Questão 27

Questão
Select all that apply to Type I SS
Responda
  • also known as "sequential SS"
  • valid only for balanced replication
  • Designed by Fisher
  • First SS developed
  • Can be used for balanced and disproportionate replication
  • takes interaction into account
  • often defaulted to because it works with almost every replication type
  • Yate's "unadjusted method of fitting constants"
  • Yate's "adjusted method of fitting constants"
  • Yate's "weighted squares of means"

Questão 28

Questão
Select all that apply to Type II SS
Responda
  • also known as "sequential SS"
  • valid only for balanced replication
  • Designed by Fisher
  • Can be used for balanced and disproportionate replication
  • more powerful than Type III with no interaction
  • takes interaction into account
  • often defaulted to because it works with almost every replication type
  • Yate's "unadjusted method of fitting constants"
  • Yate's "adjusted method of fitting constants"
  • Yate's "weighted squares of means"

Questão 29

Questão
Select all that apply to Type III SS
Responda
  • also known as "sequential SS"
  • valid only for balanced replication
  • Designed by Fisher
  • First SS developed
  • Can be used for balanced and disproportionate replication
  • takes interaction into account
  • often defaulted to because it works with almost every replication type
  • Yate's "weighted squares of means"
  • Yate's "unadjusted method of fitting constants"
  • Yate's "adjusted method of fitting constants"

Questão 30

Questão
With balanced data, all SS methods (Type I, II, III) will yield the same results.
Responda
  • True
  • False

Questão 31

Questão
SS will be the same for two entries in all computation methods (Type I, II, III). Which two?
Responda
  • error (residual)
  • interaction
  • Factor A
  • Factor B
  • total

Questão 32

Questão
In the presence of significant interaction, the chosen method of SS is _________.
Responda
  • irrelevant
  • crucial
  • somewhat important

Questão 33

Questão
Which of these are ways to DIRECTLY interpret interaction in a Two-Factor ANOVA?
Responda
  • interaction contrasts
  • simple effects
  • correlation
  • regression
  • sum of squares

Questão 34

Questão
Main effects for Factor A by this method can be interpreted as the main effect of Factor a controling or adjusting for Factor B and the interaction of Factor A x Factor B.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 35

Questão
A major criticisim of this method is that the model does not respect marginality, and that it is generally wrong to interpretmain effects in the presence of an interaction.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 36

Questão
In this method, SS for main effects are computed adjusting fo other main effects in the model, but omitting interaction terms.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 37

Questão
In this method of SS computation, effects are adjusted only for the terms that appear "above" them in the ANOVA table.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 38

Questão
A criticism of this SS computation method is that it produces different values for SS if we swap the ordering of the factors.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 39

Questão
The null hypothesses associated with this method can be interpreted as the equcivalenc eof unweighted means without making further assumptions regarding the presence of interaction.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 40

Questão
This method simplifies the testing of equality of equally weighted means if the interaction term is assumed to be zero.
Responda
  • Type I SS
  • Type II SS
  • Type III SS

Questão 41

Questão
If we can assume there's no interaction, the hypotheses for the Type I method become equivalent to Type III
Responda
  • True
  • False

Questão 42

Questão
This method tests for equivalence of fully weighted means for the first variable entered into the model, and the null hypothesis for the second factor is the same as the Type II method.
Responda
  • Type I
  • Type III

Questão 43

Questão
A criticisim for these methods of SS computation is that the null hypotheses are a function of sample size.
Responda
  • Type I
  • Type II
  • Type III

Questão 44

Questão
If ther is no interaction, this SS computation mehtod is the most powerful for an unbalanced design.
Responda
  • Type I
  • Type II
  • Type III

Questão 45

Questão
For most situations, power of the method of SS computation depends primarily on what?
Responda
  • structure of the imbalance
  • sample size
  • model type

Questão 46

Questão
Procedure for Aligned Rank Transform for a Two-Factor ANOVA 1. [blank_start]Align[blank_end] data [blank_start]seperately[blank_end] producing [blank_start]three[blank_end] different data sets 2. [blank_start]Rank aligned[blank_end] data [blank_start]all together[blank_end] [blank_start]within[blank_end] each of the [blank_start]three[blank_end] data sets 3. Replace original data with [blank_start]ranks[blank_end] [blank_start]within[blank_end] each of the [blank_start]three[blank_end] data sets 4. Run [blank_start]three[blank_end] [blank_start]separate[blank_end] [blank_start]Two-Factor[blank_end] ANOVAs on [blank_start]ranks[blank_end]
Responda
  • Align
  • Rank
  • Average
  • seperately
  • al together
  • three
  • five
  • seven
  • one
  • Rank aligned
  • Align ranked
  • Average ranked
  • Average aligned
  • Align averaged
  • Rank averaged
  • all together
  • seperately
  • within
  • between
  • three
  • one
  • five
  • seven
  • ranks
  • average
  • alignments
  • within
  • between
  • three
  • one
  • five
  • seven
  • three
  • one
  • five
  • seven
  • separate
  • combined
  • Two-Factor
  • One-Factor
  • Three-Factor
  • ranks
  • averages
  • alignments

Questão 47

Questão
A _______ is another version of a two-factor experiment, with one factor nesed within the second factor.
Responda
  • Split-Plot design
  • Nested design
  • Repeated Measures design
  • Blocked design

Questão 48

Questão
Match the design types with the correct image.
Responda
  • Two-Way CRD
  • Split-Plot design
  • One-Factor Nested design
  • Repeated Measures

Questão 49

Questão
Procedure for Aligned Rank Transform for a Three-Factor ANOVA 1. [blank_start]Align[blank_end] data [blank_start]seperately[blank_end] producing [blank_start]three[blank_end] different data sets 2. [blank_start]Rank aligned[blank_end] data [blank_start]all together[blank_end] [blank_start]within[blank_end] each of the [blank_start]three[blank_end] data sets 3. Replace original data with [blank_start]ranks[blank_end] [blank_start]within[blank_end] each of the [blank_start]three[blank_end] data sets 4. Run [blank_start]three[blank_end] [blank_start]separate[blank_end] [blank_start]Two-Factor[blank_end] ANOVAs on [blank_start]ranks[blank_end]
Responda
  • Align
  • Rank
  • Average
  • seperately
  • all together
  • three
  • one
  • five
  • seven
  • Rank aligned
  • Align ranked
  • Rank averaged
  • Align averaged
  • Average ranked
  • Average aligned
  • all together
  • separately
  • within
  • between
  • three
  • one
  • five
  • seven
  • ranks
  • averages
  • alignments
  • within
  • between
  • three
  • seven
  • three
  • one
  • five
  • seven
  • separate
  • combined
  • Two-Factor
  • One-Factor
  • Three-Factor
  • ranks
  • averages
  • alignments
  • five
  • one

Questão 50

Questão
_____________ is a common technique for estimating coefficients of linear regression equations.
Responda
  • Ordinary Least Squares (OLS)
  • Geometric Mean Axis (GMA)
  • Pearson Correlation Analysis
  • ANVOA
  • ANCOVA

Questão 51

Questão
Linear regrassion equations describe the relationship beetween one or more [blank_start]independent[blank_end] [blank_start]quantitative[blank_end] variables and a [blank_start]dependent[blank_end] variable.
Responda
  • independent
  • dependent
  • quantitative
  • qualitative
  • dependent
  • independent

Questão 52

Questão
What are the purposes of OLS? (One-Factor ANOVA with x as independent variable and y as dependent variable)
Responda
  • Quatify rate of change in y as x changes
  • Quantify value of y at x=0 (y-intercept)
  • Predict a y-value given x
  • Quantify rate of change in x as y changes
  • Predict an x-value given y
  • Quantify a value of x at y=0 (x-intercept)

Questão 53

Questão
In which situations can OLS be used?
Responda
  • straight lines
  • curved lines that can be transformed into straight lines
  • quadratic lines
  • cubic lines
  • s-shaped lines

Questão 54

Questão
OLS assumes error in...
Responda
  • only the y-direction
  • only the x-direction
  • in both the x and y direction

Questão 55

Questão
Which line is the middle line of the data (Error in both the x and y direction)?
Responda
  • Central Axis Line
  • Geometric Mean Axis (GMA)
  • Reduced Major Axis
  • Ordinary Least Squares (OLS) Line

Questão 56

Questão
The OLS method aims to minimize the [blank_start]sum of squre differences[blank_end] between the observed and predicted values.
Responda
  • sum of sqaure differences
  • sum of differences
  • average difference
  • average error
  • sum of error terms

Questão 57

Questão
The main question that OLS aims to answer is whether or not there is a treatment effect (presence or absence of change).
Responda
  • True
  • False

Questão 58

Questão
[blank_start]Prediction Intervals[blank_end]: related to individual points in a dataset that was predicted mathematically. [blank_start]Prediction Bands[blank_end]: related to the entire OLS line from the new dataset that was predicted mathematically [blank_start]Confidence Intervals[blank_end]: related to individual points in the actual dataset [blank_start]Confidence Bands[blank_end]: related to the entire OLS line from the new dataset that was predicted mathematically
Responda
  • Prediction Intervals
  • Prediction Bands
  • Confidence Intervals
  • Confidence Bands

Questão 59

Questão
Steps of inverse prediction: 1. Measure the [blank_start]dependent[blank_end] variable ([blank_start]y[blank_end]) at known values of the [blank_start]independent[blank_end] variable ([blank_start]x[blank_end]). 2. Use these values to create a [blank_start]standard curve[blank_end] and find the regression equation 3. Rearrange the regression, isolating [blank_start]x[blank_end] on one side 4. Measure the unknown, finding the [blank_start]y-value[blank_end] 5. Plug the measurement into the rearranged equation to find the unknown value
Responda
  • dependent
  • independent
  • y
  • x
  • independent
  • dependent
  • x
  • y
  • standard curve
  • line of correlation
  • central axis
  • x
  • y
  • y-value
  • x-value

Questão 60

Questão
[blank_start]Interpolation[blank_end]: using the section of the OLS line bounded by the dataset for data prediction ([blank_start]good use of equation[blank_end]) [blank_start]Extrapolation[blank_end]: using sections of the OLS line not bounded by the dataset in order to complete data prediction ([blank_start]not recommended[blank_end])
Responda
  • Interpolation
  • Extrapolation
  • good use of equation
  • not recommended
  • Extrapolation
  • Interpolation
  • not recommended
  • good use of equation

Questão 61

Questão
Common Diagnostic Tests for OLS [blank_start]Scatter Plot of Y vs X[blank_end] -initial visual diagnostic -may indicate [blank_start]non-linear patterns[blank_end] r^2 -some information on the [blank_start]linear relationship between X and Y[blank_end] -as a general rule, r^2 > [blank_start]0.95[blank_end] indicates a strong linear relationship [blank_start]Durbin-Watson Test[blank_end] -indication of [blank_start]autocorrelation[blank_end] or non-random error terms -ranges from 0-4 - 2=[blank_start]low autocorrelation[blank_end], near 1 or 4 = [blank_start]high autocorrelation[blank_end] [blank_start]Diagonal Elements of the hat matrix[blank_end] -indication of X outlier [blank_start]Studentized Residual[blank_end] -examines patterns on scatter plot of Studentized Residual vs. X -any pattern other than random indicates potential issues with [blank_start]linearity or HOV[blank_end] [blank_start]Studentized Deletion REsidual[blank_end] -large [blank_start]absolue alues[blank_end] indicate possible Y-outliers -absolute SDR value in 2-3 range or greater indicate possible outlier [blank_start]Cook's Distance[blank_end] -large values indicate [blank_start]influential Y data point[blank_end] on linear equation -percentiles greater than [blank_start]50[blank_end]% indicate overly influential data point. [blank_start]95[blank_end]% would be extreme.
Responda
  • Scatter Plot of Y vs X
  • non-linear patterns
  • linear relationship between X and Y
  • 0.95
  • 0.50
  • Durbin-Watson Test
  • autocorrelation
  • low autocorrelation
  • high autocorrelation
  • Diagonal Elements of the hat matrix
  • Studentized Residual
  • Studentized Deletion Residual
  • Cook's Distance
  • linearity or HOV
  • absolue values
  • percentiles
  • averages
  • influential Y data point
  • 50
  • 95

Questão 62

Questão
r^2 = [blank_start]1[blank_end] indicates a perfect line r=[blank_start]1[blank_end] indicates perfect positive correlation r=[blank_start]-1[blank_end] indicates perfect negative correlation r=[blank_start]0[blank_end] indicates no correlation
Responda
  • 1
  • 1
  • -1
  • 0

Questão 63

Questão
Transformation of X --corrects non-linearity without changing [blank_start]variance[blank_end] and [blank_start]distribution of Y-values[blank_end] Transformation of Y --corrects non-linearity of [blank_start]relation between X and Y[blank_end] --correct [blank_start]HOV[blank_end] and [blank_start]non-normal distribution of Y values[blank_end] Transformation of both X and Y --correct non-linearity [blank_start]imposed by transformations[blank_end] to fix other issues
Responda
  • distribution of Y-values
  • relation between X and Y
  • HOV
  • non-normal distribution of Y values
  • variance
  • imposed by transformations

Questão 64

Questão
[blank_start]Autoregressing Models[blank_end] --regression taking [blank_start]autocorelation[blank_end] into account --usually based on measuring things over time [blank_start]Logistic Regression[blank_end] --Regression of discrete categorical data ([blank_start]age, presence/absence[blank_end]) [blank_start]Curvilinear Regression[blank_end] --fitting polynomial curves ([blank_start]cubic, quadratic, etc.[blank_end] [blank_start]Nonlinear Regression[blank_end] --fitting [blank_start]S-shaped curves[blank_end] --commonly used for growth curves [blank_start]Spline Regression[blank_end] --using [blank_start]splines and knots[blank_end] to fit separate sections of complex patterns --good for fit, not great for prediction [blank_start]Multiple Regression[blank_end] --similar to linear regression in many aspects, but more than one X variable --uses [blank_start]dummy X matrix[blank_end]
Responda
  • Autoregressing Models
  • Logistic Regression
  • autocorelation
  • Curvilinear Regression
  • cubic, quadratic, etc.
  • S-shaped curves
  • Nonlinear Regression
  • age, presence/absence
  • Spline Regression
  • splines and knots
  • Multiple Regression
  • dummy X matrix

Questão 65

Questão
ANCOVA is a full design.
Responda
  • True
  • False

Questão 66

Questão
In ANCOVA, for each individual [blank_start]EU/MU[blank_end] [blank_start]a covariate[blank_end] is measured to account for variation other than the treatment effect.
Responda
  • EU/MU
  • block
  • factor
  • a covariate
  • an additional factor
  • an additional level
  • a block

Questão 67

Questão
ANCOVA can be applied to any design, including designs that also have blocking
Responda
  • True
  • False

Questão 68

Questão
ANCOVA is primarily utilized for what purpose?
Responda
  • remove background variation
  • add an additional level of analysis
  • order factors by importance

Questão 69

Questão
What is the null hypothesis of ANCOVA?
Responda
  • The adjusted means of columns are equal
  • The means of columns are equal
  • The observed frequency is equal to the expected frequency
  • The means of columns and rows are equal
  • There is no correlation between X and Y

Questão 70

Questão
What is the null hypothesis of Goodness of Fit?
Responda
  • The adjusted means of columns are equal
  • The means of columns are equal
  • The observed frequency is equal to the expected frequency
  • The means of columns and rows are equal
  • There is no correlation between X and Y

Questão 71

Questão
What is the null hypothesis of linear correlation?
Responda
  • The adjusted means of columns are equal
  • The means of columns are equal
  • The observed frequency is equal to the expected frequency
  • The means of columns and rows are equal
  • There is no correlation between X and Y

Questão 72

Questão
What are the assumptions for Y (data) for using a covariate in a One-Factor CRD?
Responda
  • Data points within each column are from randomly drawn individuals and are normaly distributed
  • Data points are independent of one another within and between columns
  • Variances of columns are similar
  • independent of treatment effect
  • no error in measuring
  • X and Y form a linear relationship for all treatment groups
  • slopes of regression lines are similar for all treatment groups

Questão 73

Questão
What are the assumptions for X (covariate) for using a covariate in a One-Factor CRD?
Responda
  • Data points within each column are from randomly drawn individuals and are normaly distributed
  • Data points are independent of one another within and between columns
  • Variances of columns are similar
  • independent of treatment effect
  • no error in measuring
  • X and Y form a linear relationship for all treatment groups
  • slopes of regression lines are similar for all treatment groups

Questão 74

Questão
What are the assumptions for X and Y for using a covariate in a One-Factor CRD?
Responda
  • Data points within each column are from randomly drawn individuals and are normaly distributed
  • Data points are independent of one another within and between columns
  • Variances of columns are similar
  • independent of treatment effect
  • no error in measuring
  • X and Y form a linear relationship for all treatment groups
  • slopes of regression lines are similar for all treatment groups

Questão 75

Questão
What is the main purpose for linear correlation?
Responda
  • Determine correlation of two measures.
  • Determine linear relationship between two measures
  • Remove background variation

Questão 76

Questão
What are the assumptions of Pearson's Correlation?
Responda
  • The X and Y pairs of data points are from randomly drawn individuals that are independent of one another
  • X and Y are normally distributed
  • X and Y form a linear relationship
  • HOV between data pairs

Questão 77

Questão
What are the assumptions of Spearman Non-Parametric Correlation?
Responda
  • The X and Y pairs of data points are from randomly drawn individuals that are independent of one another
  • X and Y are normally distributed
  • X and Y form a linear relationship
  • HOV between data pairs

Questão 78

Questão
[blank_start]r[blank_end] = Pearson correlation coefficient [blank_start]r^2[blank_end] = coefficient of determination
Responda
  • r^2
  • r

Questão 79

Questão
[blank_start]OLS[blank_end] lines are used for prediction [blank_start]Central Axis[blank_end] lines are used for function
Responda
  • OLS
  • Central Axis

Questão 80

Questão
In a t-test of the correlation coefficient, the null hypothesis is [blank_start]r = rho = 0[blank_end]. For a two-tailed test, t follows the [blank_start]t[blank_end]-distribution with v degrees of freedom.
Responda
  • r = rho = 0
  • r^2 = rho = 0
  • r = rho <> 0
  • r^2 = rho <> 0
  • r1 = r2
  • t
  • Durbin-Watson
  • r
  • x^2
  • G

Questão 81

Questão
z and z* transforms and the z-test of the correlation coefficient is used for testing which null hypotheses?
Responda
  • r = rho <> 0
  • r^2 = rho <> 0
  • r = rho = 0
  • r^2 = rho = 0
  • r1 = r2
  • basically, when the null hypothesis is that r is not equal to 0
  • basically, when the null hypothesis is that r is equal to 0

Questão 82

Questão
Which is one of the best non-parametric procedures for testing correlation?
Responda
  • Spearman
  • Pearson's
  • Durbin-Watson
  • Cook's Distance

Questão 83

Questão
The Spearman Non-Parametric procedures of determining correlation is often used by default because it doesn't rely on normality or linearity, but still gives reliable conclusions.
Responda
  • True
  • False

Questão 84

Questão
Analysis of Frequency/Count data relies on the testing of ___________ and ____________.
Responda
  • observed frequencies
  • expected frequencies
  • correlation coefficients
  • t-values
  • assigned values

Questão 85

Questão
What count-data design(s) can be analyzed with Goodness of Fit?
Responda
  • One-way
  • Two-way
  • Three-way
  • Four-way

Questão 86

Questão
What count-data design(s) can be analyzed with Contingency Tables?
Responda
  • One-way
  • Two-way
  • Three-way
  • Four-way

Questão 87

Questão
What is the null hypothesis for Goodness of Fit?
Responda
  • observed frequency = expected frequency
  • two-way classification factors are independent of each other
  • r = rho = 0
  • homogeneity across all tests

Questão 88

Questão
What is the null hypothesis for Contingency Tables?
Responda
  • observed frequency = expected frequency
  • two-way classification factors are independent of each other
  • r = rho = 0
  • homogeneity across all tests

Questão 89

Questão
What is the null hypothesis for Homogeneity Log-likelihood tests??
Responda
  • observed frequency = expected frequency
  • two-way classification factors are independent of each other
  • r = rho = 0
  • homogeneity across all tests

Questão 90

Questão
What are the assumptions for Goodness of Fit?
Responda
  • Counts are independent of each other
  • Expected frequencies are postulated before counts are made
  • Desireable to have a total count > 25
  • Desireable to have expected frequencies > 5
  • Desireable to have a total count > 6x the number of cells
  • Data is additive
  • Data is multiplicative
  • Counts are normally distributed
  • HOV

Questão 91

Questão
What are the assumptions for Contingency Tables?
Responda
  • Counts are independent of each other
  • Expected frequencies are postulated before counts are made
  • Desireable to have a total count > 25
  • Desireable to have expected frequencies > 5
  • Desireable to have a total count > 6x the number of cells
  • Data is additive
  • Data is multiplicative
  • Counts are normally distributed
  • HOV

Questão 92

Questão
Chi-squared test uses [blank_start]x^2[blank_end] statistic, which follows the [blank_start]x^2[blank_end] distribution table with v degrees of freedom. Log-likelihood test uses the [blank_start]G[blank_end] statistic, which follows the [blank_start]x^2[blank_end] distribution table with v degrees of freedom.
Responda
  • x^2
  • t
  • G
  • D
  • x^2
  • t
  • G
  • D
  • z
  • z
  • G
  • x^2
  • t
  • D
  • z
  • x^2
  • G
  • D
  • t
  • z

Questão 93

Questão
Heterogeneitiy Log-Likelihood Tests analyze [blank_start]correlation[blank_end] by combining [blank_start]Goodness of Fit[blank_end] tests.
Responda
  • correlation
  • linear regression
  • Goodness of Fit
  • Contingency Table
  • ANOVA
  • ANCOVA

Questão 94

Questão
If the heterogeneity G test does not reject the null hypothesis of homogeneity across all tests, the [blank_start]Pooled G[blank_end] test is a legitimate test of adding the counts of all tests together for a combined test with a larger number of counts.
Responda
  • Pooled G
  • Chi-squared
  • Log-likelihood
  • Durbin-Watson

Questão 95

Questão
The purpose of this test is to add counts of multiple Godness-of-fit tests for a combined test with a larger number of counts.
Responda
  • Pooled G
  • Heterogeneity G
  • Goodness of Fit
  • Contingency Table

Questão 96

Questão
The purpose of this test is to test for homogeneity of goodness-of-fit tests (log-likelihood), particularly before a Pooled G test.
Responda
  • Pooled G
  • Heterogeneity G
  • Goodness of Fit
  • Contingency Table

Questão 97

Questão
Contingency tables can have marginal totals that are either fixed or not fixed. [blank_start]Both fixed[blank_end] ([blank_start]very rare[blank_end]) Control totals of both factors, but not counts of each cell In other words: control ratio between rows/columns, but not ratios of counts within each row/column [blank_start]Both margins not fixed[blank_end] (common) Don't control totals of each row/column, only the total N In other words: don't control any ratios [blank_start]One margin fixed, one margin not[blank_end] ([blank_start]common[blank_end]) Control totals of one facor (rows OR columns), but not the other. In other words: control the ratio of either rows OR columns, but not the other.
Responda
  • One margin fixed, one margin not
  • Both margins not fixed
  • Both fixed
  • very rare
  • common

Semelhante

Statistics Key Words
Culan O'Meara
Biology AQA 3.1.3 Cells
evie.daines
Biology AQA 3.2.5 Mitosis
evie.daines
Biology AQA 3.1.3 Osmosis and Diffusion
evie.daines
Biology- Genes, Chromosomes and DNA
Laura Perry
Biology- Genes and Variation
Laura Perry
Enzymes and Respiration
I Turner
GCSE AQA Biology - Unit 2
James Jolliffe
GCSE AQA Biology 1 Quiz
Lilac Potato
Using GoConqr to study science
Sarah Egan
Cells and the Immune System
Eleanor H