Passive Design- Passive solar heating

Descrição

minimise heat loss- infiltration and convection maximise solar gain- direct, indirect and isolated solar gain
Raelle Barnard
Quiz por Raelle Barnard, atualizado more than 1 year ago
Raelle Barnard
Criado por Raelle Barnard mais de 8 anos atrás
16
0

Resumo de Recurso

Questão 1

Questão
Fossil fuel resources are not [blank_start]endless[blank_end], so the price of it will rise in the future. [blank_start]Renewable[blank_end] energy [blank_start]technology[blank_end] will be developed further and might get [blank_start]cheaper[blank_end], however they still need an initial [blank_start]investment[blank_end].
Responda
  • endless
  • Renewable
  • technology
  • cheaper
  • investment

Questão 2

Questão
Sustainable Design: The [blank_start]tier[blank_end] [blank_start]approach[blank_end] [blank_start]Renewable[blank_end] energy Mechanical [blank_start]heating[blank_end] and [blank_start]cooling[blank_end] [blank_start]passive[blank_end] systems [blank_start]basic[blank_end] building design Renewable energy- Mechanical heating and cooling However the [blank_start]mechanical[blank_end] system won't be [blank_start]small[blank_end] enough to be powered by [blank_start]renewable[blank_end] energy or passive systems won't work. Basic building design must be [blank_start]climate[blank_end] responsive.
Responda
  • tier
  • approach
  • Renewable
  • heating
  • cooling
  • passive
  • basic
  • small
  • climate
  • renewable
  • mechanical

Questão 3

Questão
Passive Design -Passive design is a key element of [blank_start]sustainable[blank_end] construction -Maximise [blank_start]comfort[blank_end] + minimise [blank_start]energy[blank_end] use -only use the energy available locally (nothing new: similar to vernacular architecture) -uses the [blank_start]natural[blank_end] flow of energy prevailing on site and works with it 1. to [blank_start]heat[blank_end] 2. to [blank_start]cool[blank_end] 3. to ill[blank_start]uminate[blank_end] 4. to ven[blank_start]tilate[blank_end] a place
Responda
  • sustainable
  • comfort
  • energy
  • natural
  • heat
  • cool
  • uminate
  • tilate

Questão 4

Questão
Passive Design. has been [blank_start]adapted[blank_end] by a design which generally uses little [blank_start]energy[blank_end], and is highly energy efficient. with this new interpretation of passive design small mechanical "[blank_start]active[blank_end]" [blank_start]appliances[blank_end] can be used to achieve user [blank_start]comfort[blank_end].
Responda
  • adapted
  • energy
  • active
  • comfort
  • appliances

Questão 5

Questão
Passive Design -low [blank_start]energy[blank_end] and energy [blank_start]efficent[blank_end] buildings means careful considerations of [blank_start]heating[blank_end], [blank_start]cooling[blank_end], [blank_start]lighting[blank_end] and [blank_start]ventilation[blank_end] systems -[blank_start]solar[blank_end] [blank_start]control[blank_end] means of heating, cooling and ventilating needs to be [blank_start]available[blank_end] when it would be beneficial but has to be eliminated if detrimental to a comfortable [blank_start]indoor[blank_end] [blank_start]climate[blank_end].
Responda
  • energy
  • efficent
  • heating
  • cooling
  • lighting
  • ventilation
  • control
  • solar
  • available
  • indoor
  • climate

Questão 6

Questão
Passive Design -uses the following principles to improve on the [blank_start]thermal[blank_end] [blank_start]comfort[blank_end] and [blank_start]energy[blank_end] performance of a building 1. [blank_start]orientation[blank_end] 2. [blank_start]glazing/solar control[blank_end] 3. [blank_start]insulation[blank_end] 4. [blank_start]ventilation[blank_end] 5. [blank_start]zoning[blank_end] 6. [blank_start]thermal mass[blank_end]
Responda
  • thermal
  • comfort
  • energy
  • orientation
  • glazing/solar control
  • insulation
  • ventilation
  • zoning
  • thermal mass

Questão 7

Questão
The building [blank_start]bioclimatic[blank_end] chart -used as a tool to decide what [blank_start]systems[blank_end] are valid for the [blank_start]climate[blank_end] Procedure -plot 2 points 1. monthly average [blank_start]min[blank_end] temp with the [blank_start]max[blank_end] rh 2. monthly average max [blank_start]temp[blank_end] with the min [blank_start]rh[blank_end] - then link both points for each month - each [blank_start]line[blank_end] will represent the hange in temp and rh over and averge [blank_start]day[blank_end] - one "pair" of data = 1 point - one line = 1 month
Responda
  • bioclimatic
  • systems
  • climate
  • min
  • max
  • temp
  • rh
  • line
  • day

Questão 8

Questão
Passive [blank_start]solar[blank_end] heating - technique that uses [blank_start]heat[blank_end] of the [blank_start]sun[blank_end] to [blank_start]regulate[blank_end] a buildings [blank_start]temp[blank_end] without using other [blank_start]energy[blank_end] [blank_start]sources[blank_end] - successful use of passive design depends upon 1. the [blank_start]correct[blank_end] understanding of [blank_start]sun's[blank_end] [blank_start]movements[blank_end] 2. the best use of [blank_start]mterials[blank_end] and their [blank_start]placement[blank_end] in order to capitalise on the solar energy
Responda
  • solar
  • heat
  • sun
  • regulate
  • temp
  • energy
  • sources
  • sun's
  • correct
  • movements
  • mterials
  • placement

Questão 9

Questão
Main objectives of solar [blank_start]heating[blank_end] 1. to [blank_start]minimise[blank_end] all [blank_start]areas[blank_end] of heat [blank_start]loss[blank_end] from the building 2. [blank_start]maximise[blank_end] heat [blank_start]gains[blank_end] within each [blank_start]space[blank_end]
Responda
  • heating
  • minimise
  • loss
  • areas
  • maximise
  • gains
  • space

Questão 10

Questão
Passive Solar heating - to [blank_start]minimise[blank_end] [blank_start]heat[blank_end] [blank_start]loss[blank_end] by 1. [blank_start]infiltration[blank_end] 2. [blank_start]conduction[blank_end]
Responda
  • minimise
  • loss
  • infiltration
  • conduction
  • heat

Questão 11

Questão
[blank_start]Infilitration[blank_end] - [blank_start]air[blank_end] moving [blank_start]through[blank_end] 1. [blank_start]cracks[blank_end] 2. [blank_start]apertures[blank_end] (openings) 3. [blank_start]porous[blank_end] [blank_start]elements[blank_end] of the [blank_start]building[blank_end] [blank_start]fabrics[blank_end] this can be [blank_start]minimised[blank_end] by making sure that the building [blank_start]envelop[blank_end] is [blank_start]airtight[blank_end] and not [blank_start]leaking[blank_end]
Responda
  • Infilitration
  • air
  • through
  • cracks
  • apertures
  • porous
  • elements
  • building
  • fabrics
  • minimised
  • envelop
  • airtight
  • leaking

Questão 12

Questão
[blank_start]Conduction[blank_end] can be [blank_start]minimised[blank_end] by 1. usuing sufficient [blank_start]insulation[blank_end] for the building [blank_start]envelope[blank_end] 2. using [blank_start]double[blank_end] / [blank_start]triple[blank_end] glazed [blank_start]windows[blank_end] 3. [blank_start]avoiding[blank_end] [blank_start]thermal bridges[blank_end]
Responda
  • Conduction
  • minimised
  • insulation
  • envelope
  • double
  • triple
  • windows
  • avoiding
  • thermal bridges

Questão 13

Questão
Passive solar heating - [blank_start]maximise[blank_end] [blank_start]solar[blank_end] [blank_start]gain[blank_end] - there are several types of [blank_start]solar systems[blank_end] that can exploit solar gain 1. [blank_start]direct[blank_end] gain system 2. [blank_start]indirect[blank_end] gain system 3. [blank_start]isolated[blank_end] gain system
Responda
  • maximise
  • solar
  • gain
  • solar systems
  • direct
  • indirect
  • isolated

Questão 14

Questão
Passive solar heating system involves - a [blank_start]collection[blank_end] of [blank_start]solar radiation[blank_end] (typically through [blank_start]equator-facing windows[blank_end]) - [blank_start]storage[blank_end] 1. takes place in [blank_start]thermal mass[blank_end] which [blank_start]absorbs[blank_end] a large amount of [blank_start]solar energy[blank_end]. thermal mass is characterised by its ability to [blank_start]absorb[blank_end] and [blank_start]store[blank_end] [blank_start]heat[blank_end] to then [blank_start]re-radiate[blank_end] it at a [blank_start]later[blank_end] time - [blank_start]distribution of solar energy[blank_end] 1. through [blank_start]radiation[blank_end], [blank_start]convection[blank_end] and [blank_start]conduction[blank_end]. (small [blank_start]pumps[blank_end] and [blank_start]fans[blank_end] might assist in this process) - [blank_start]control of solar radiation admittance[blank_end]
Responda
  • collection
  • solar radiation
  • equator-facing windows
  • storage
  • thermal mass
  • absorbs
  • solar energy
  • absorb
  • store
  • heat
  • re-radiate
  • later
  • distribution of solar energy
  • radiation
  • convection
  • conduction
  • pumps
  • fans
  • control of solar radiation admittance

Questão 15

Questão
[blank_start]Thermal Mass[blank_end] -[blank_start]materials[blank_end] which have the [blank_start]capacity[blank_end] to [blank_start]store thermal energy[blank_end] for [blank_start]extended[blank_end] periods -[blank_start]applications[blank_end] 1.passivve [blank_start]solar heating[blank_end] 2. [blank_start]passive cooling[blank_end] -[blank_start]functions[blank_end] 1. [blank_start]moderates indoor temperature[blank_end] fluctutations 2. [blank_start]reduces heat flow[blank_end] through [blank_start]envelope[blank_end] 3. [blank_start]stores energy[blank_end] - [blank_start]dampens[blank_end] & [blank_start]shifts[blank_end] [blank_start]peak loads[blank_end]
Responda
  • Thermal Mass
  • materials
  • store thermal energy
  • capacity
  • extended
  • applications
  • solar heating
  • passive cooling
  • functions
  • moderates indoor temperature
  • reduces heat flow
  • envelope
  • stores energy
  • dampens
  • shifts
  • peak loads

Questão 16

Questão
[blank_start]Inside[blank_end] and [blank_start]outside[blank_end] [blank_start]temperatures[blank_end] also known as [blank_start]time lag[blank_end] and [blank_start]decrement factor[blank_end]. [blank_start]Time lag[blank_end] 1. the [blank_start]time delay[blank_end] due to the [blank_start]thermal mass[blank_end] known as a time lag 2. the [blank_start]thicker[blank_end] and more [blank_start]resistive[blank_end] the [blank_start]material[blank_end], the [blank_start]longer[blank_end] it will take for [blank_start]heat waves[blank_end] to [blank_start]pass through[blank_end] [blank_start]Decrement factor[blank_end] 1. the [blank_start]reduction[blank_end] in [blank_start]cyclical temperature[blank_end] on the [blank_start]inside surface[blank_end] compared to the [blank_start]outside surface[blank_end] is known as [blank_start]decrement[blank_end] 2. a material with a [blank_start]decrement value[blank_end] of [blank_start]0.5[blank_end] which experiences a [blank_start]20[blank_end] degree celcius [blank_start]diurnal variation[blank_end] in the [blank_start]external surface temperature[blank_end] would experience on a [blank_start]10[blank_end] degree celcius [blank_start]variation[blank_end] in the [blank_start]internal surface temperature[blank_end]
Responda
  • Inside
  • outside
  • temperatures
  • time lag
  • decrement factor
  • Time lag
  • Decrement factor
  • time delay
  • thermal mass
  • thicker
  • resistive
  • material
  • longer
  • heat waves
  • pass through
  • reduction
  • cyclical temperature
  • inside surface
  • outside surface
  • decrement
  • 0.5
  • decrement value
  • 20
  • diurnal variation
  • external surface temperature
  • 10
  • variation
  • internal surface temperature

Questão 17

Questão
[blank_start]Thermal mass[blank_end] for buildings - for a [blank_start]material[blank_end] to provide a [blank_start]useful level[blank_end] of [blank_start]thermal mass[blank_end], a combination of three basic [blank_start]properties[blank_end] is required 1. [blank_start]high specific heat capacity[blank_end] -to [blank_start]maximise[blank_end] the [blank_start]heat[blank_end] that can be [blank_start]stored[blank_end] [blank_start]per kg[blank_end] of material 2. [blank_start]high density[blank_end] - to [blank_start]maximise the overall weight[blank_end] of the [blank_start]material used[blank_end] 3. [blank_start]moderate thermal conductivity[blank_end] - so that [blank_start]heat conduction[blank_end] is roughly in [blank_start]synchronisation[blank_end] with the [blank_start]diurnal heat flow in and out[blank_end] of the [blank_start]building[blank_end]
Responda
  • Thermal mass
  • material
  • useful level
  • thermal mass
  • properties
  • high specific heat capacity
  • maximise
  • heat
  • stored
  • per kg
  • high density
  • maximise the overall weight
  • material used
  • moderate thermal conductivity
  • heat conduction
  • synchronisation
  • diurnal heat flow in and out
  • building

Questão 18

Questão
What is the thermal conductivity of brick? [blank_start]0.77[blank_end] what is the density of lightweight aggregate block? [blank_start]1400[blank_end] what is the specific heat capacity of sandstone? [blank_start]1000[blank_end] what is the effective thermal mass of timber? [blank_start]low[blank_end] what is the effective thermal mass of concrete? [blank_start]high[blank_end] what is the formula for desnity [blank_start](kg/m3)[blank_end] what is the formula for thermal conductivity [blank_start](W/ mK)[blank_end] what is the formula for heat capacity? [blank_start](J/ kg K)[blank_end] what does TC stand for? [blank_start]thermal conductivity[blank_end]
Responda
  • 0.77
  • 1400
  • 1000
  • low
  • high
  • (kg/m3)
  • (W/ mK)
  • (J/ kg K)
  • thermal conductivity

Questão 19

Questão
Thermal mass in [blank_start]summer[blank_end] [blank_start]Day[blank_end] - during [blank_start]hot[blank_end] weather, [blank_start]windows[blank_end] kept [blank_start]shut[blank_end] to keep [blank_start]warm air out[blank_end] -[blank_start]overhangs[blank_end] on the [blank_start]south elevations[blank_end] to keep out [blank_start]high angle sun[blank_end] during the hottest part of the day -[blank_start]cooling[blank_end] is provided by [blank_start]thermal mass[blank_end] in [blank_start]floors[blank_end] and [blank_start]walls[blank_end] [blank_start]Night[blank_end] - [blank_start]windows opened[blank_end] at night to [blank_start]ventilate[blank_end] the building iand [blank_start]cool[blank_end] the [blank_start]fabric[blank_end] -if [blank_start]another hot day[blank_end] is expected, windows are closed again in the morning and [blank_start]cycle is repeated[blank_end]
Responda
  • summer
  • Day
  • hot
  • windows
  • shut
  • warm air out
  • overhangs
  • south elevations
  • high angle sun
  • cooling
  • thermal mass
  • floors
  • walls
  • Night
  • windows opened
  • ventilate
  • cool
  • fabric
  • another hot day
  • cycle is repeated

Questão 20

Questão
Thermal mass in [blank_start]winter[blank_end] [blank_start]Day[blank_end] - during [blank_start]heating season[blank_end], [blank_start]low angle sun[blank_end] can enter through [blank_start]south-facing windows[blank_end], and the [blank_start]heat is absorbed[blank_end] by the [blank_start]thermal mass[blank_end] in the [blank_start]floor[blank_end] and [blank_start]walls[blank_end] - in the [blank_start]evening[blank_end] when the sun goes down and the [blank_start]temperature drops[blank_end], the [blank_start]heat flow[blank_end] is [blank_start]reserved[blank_end] and [blank_start]passes[blank_end] back into the [blank_start]room[blank_end] [blank_start]Night[blank_end] - curtains are drawn and [blank_start]windows kept closed[blank_end] to [blank_start]minimise heat loss[blank_end] - [blank_start]heat continues[blank_end] to be [blank_start]released[blank_end] by the thermal mass and [blank_start]supplementary heating[blank_end] is [blank_start]adjusted[blank_end] so only [blank_start]minimal[blank_end] amount is used - [blank_start]morning[blank_end], the thermal mass will have given up most of its heat and the [blank_start]occupants[blank_end] will typically need to [blank_start]rely[blank_end] on s[blank_start]upplementary heating until later[blank_end] in the [blank_start]day[blank_end]
Responda
  • winter
  • Day
  • heating season
  • low angle sun
  • south-facing windows
  • heat is absorbed
  • thermal mass
  • floor
  • walls
  • evening
  • temperature drops
  • heat flow
  • reserved
  • passes
  • room
  • Night
  • windows kept closed
  • minimise heat loss
  • heat continues
  • released
  • supplementary heating
  • adjusted
  • minimal
  • morning
  • occupants
  • rely
  • upplementary heating until later
  • day

Questão 21

Questão
What 4 is type of passive heating system is shown in the image order them in terms of the image? 1. [blank_start]Direct[blank_end] system 2. [blank_start]Roof pond[blank_end] system 3. [blank_start]Thermal wall[blank_end] system 4. [blank_start]Sunspace[blank_end]
Responda
  • Direct
  • Roof pond
  • Thermal wall
  • Sunspace

Questão 22

Questão
[blank_start]Direct gain[blank_end] system -passive heating technique generally used in [blank_start]cold[blank_end] or [blank_start]temperate climates[blank_end] -sunlight enters theough [blank_start]windows[blank_end], [blank_start]clerestories[blank_end] or [blank_start]skylights[blank_end] and is [blank_start]absorbed[blank_end] by the [blank_start]inside surfaces[blank_end] [blank_start](thermal mass)[blank_end] - if the room is [blank_start]warm[blank_end] [blank_start]thermal mass[blank_end] will [blank_start]conduct heat[blank_end] into the [blank_start]core[blank_end] - when [blank_start]temmperatures drop[blank_end] the [blank_start]heat[blank_end] is [blank_start]released slowly[blank_end]
Responda
  • Direct gain
  • cold
  • temperate climates
  • windows
  • clerestories
  • skylights
  • absorbed
  • inside surfaces
  • (thermal mass)
  • warm
  • thermal mass
  • conduct heat
  • core
  • temmperatures drop
  • heat
  • released slowly

Questão 23

Questão
[blank_start]Direct gain[blank_end] system thermal mass deisgn considerations 1. large areas of the [blank_start]equator-facing glazing[blank_end] 2. large areas of [blank_start]thermal mass[blank_end] -[blank_start]solar exposure[blank_end] -[blank_start]size/ thickness[blank_end] -to [blank_start]absorb[blank_end] and [blank_start]store[blank_end] the required amount of [blank_start]energy[blank_end] 3. [blank_start]located in walls and floors[blank_end], in areas that experience [blank_start]direct solar gain[blank_end] 4. thermal mass should not [blank_start]lose the absorbed heat[blank_end] to the [blank_start]outside air[blank_end] [blank_start](insulation require)[blank_end] 5. needs to be [blank_start]exposed internally[blank_end] to work properly -bare functionally and asthetically as possible, [blank_start]no carpet[blank_end] or other [blank_start]thermal mass material[blank_end] to cover, if need cover use [blank_start]ceramic tiles[blank_end]. - in [blank_start]summer[blank_end], [blank_start]shading[blank_end] of the [blank_start]collector surface is necessary[blank_end] in order to [blank_start]avoid overheating[blank_end]
Responda
  • Direct gain
  • equator-facing glazing
  • thermal mass
  • solar exposure
  • size/ thickness
  • absorb
  • store
  • energy
  • located in walls and floors
  • direct solar gain
  • lose the absorbed heat
  • outside air
  • (insulation require)
  • exposed internally
  • no carpet
  • thermal mass material
  • ceramic tiles
  • summer
  • shading
  • collector surface is necessary
  • avoid overheating

Questão 24

Questão
Case study: [blank_start]Johnson Residence ArkinTilt Architects[blank_end] [blank_start]Gardnerville, Nevada[blank_end] - winner of the AIA COTE top 10 green projects 2005 -[blank_start]direct gain passive solar[blank_end] -[blank_start]straw bale[blank_end] with earthen finish, and [blank_start]concrete floors for thermal mass[blank_end] - [blank_start]solar hot-water[blank_end] and [blank_start]deep sand bed hydronic heating system[blank_end] -[blank_start]photovoltaic panels[blank_end] PV
Responda
  • Johnson Residence ArkinTilt Architects
  • Gardnerville, Nevada
  • direct gain passive solar
  • straw bale
  • concrete floors for thermal mass
  • solar hot-water
  • deep sand bed hydronic heating system
  • photovoltaic panels

Questão 25

Questão
Case study: [blank_start]Hidden Villa Youth Hostel[blank_end] [blank_start]ArkinTilt Architects[blank_end] [blank_start]Los Altos Hills, California[blank_end] -winner of AIA COTE top 10 green projects [blank_start]2003[blank_end] - [blank_start]direct gain passive solar[blank_end] - [blank_start]rammed earth walls[blank_end] and [blank_start]concrete floors[blank_end] for [blank_start]thermal mass[blank_end] -[blank_start]ground-source geothermal heat pump[blank_end] for [blank_start]hydronic heating system.[blank_end]
Responda
  • Hidden Villa Youth Hostel
  • ArkinTilt Architects
  • Los Altos Hills, California
  • 2003
  • direct gain passive solar
  • rammed earth walls
  • concrete floors
  • thermal mass
  • ground-source geothermal heat pump
  • hydronic heating system.

Questão 26

Questão
[blank_start]Indirect solar gain[blank_end] -[blank_start]thermal mass located[blank_end] between the [blank_start]sun[blank_end] and the [blank_start]room[blank_end] (usually living room) -thermal mass [blank_start]acting[blank_end] as [blank_start]insulation[blank_end], [blank_start]absorbs[blank_end] the [blank_start]direct sunlight[blank_end] and [blank_start]transfers[blank_end] it to the [blank_start]living space by radiation/ conduction[blank_end]
Responda
  • Indirect solar gain
  • sun
  • room
  • thermal mass located
  • insulation
  • acting
  • absorbs
  • direct sunlight
  • transfers
  • living space by radiation/ conduction

Questão 27

Questão
Indirect solar gain types 1. [blank_start]solar or mass[blank_end] wall 2. [blank_start]trombe[blank_end] wall 3. [blank_start]translucent insulation[blank_end] 4. [blank_start]roof pond systems[blank_end]
Responda
  • solar or mass
  • trombe
  • translucent insulation
  • roof pond systems

Questão 28

Questão
[blank_start]Mass wall[blank_end] - [blank_start]Indirect solar gain[blank_end] - [blank_start]thermal mass[blank_end] located immediatley behind (south-facing) [blank_start]glass[blank_end]
Responda
  • Indirect solar gain
  • Mass wall
  • trombe wall
  • thermal mass
  • glass

Questão 29

Questão
[blank_start]Trombe wall[blank_end]- [blank_start]indirect solar gain[blank_end] -same principle as [blank_start]mass wal[blank_end]l but it as [blank_start]openings[blank_end] at the [blank_start]top[blank_end] and [blank_start]bottom[blank_end] -[blank_start]sunlight passes through the glass[blank_end] and is [blank_start]absorbed[blank_end] and [blank_start]stored[blank_end] by the [blank_start]wall[blank_end] -the [blank_start]vents[blank_end] at both [blank_start]upper and lower[blank_end] parts provide for [blank_start]air circulation[blank_end] and [blank_start]heat transfer[blank_end] in the space behind [blank_start]during the day[blank_end] - the [blank_start]glass airspace[blank_end] keep the [blank_start]heat[blank_end] [blank_start]from radiating back to the outside[blank_end] - heat is [blank_start]transferred[blank_end] by [blank_start]conduction/ radiation[blank_end] as the [blank_start]thermal mass[blank_end] [blank_start]surface warms up[blank_end], and is [blank_start]slowly delivered[blank_end] to the [blank_start]building[blank_end] some [blank_start]hours later[blank_end]
Responda
  • Trombe wall
  • indirect solar gain
  • mass wal
  • openings
  • top
  • bottom
  • sunlight passes through the glass
  • absorbed
  • stored
  • wall
  • vents
  • upper and lower
  • air circulation
  • heat transfer
  • during the day
  • glass airspace
  • heat
  • from radiating back to the outside
  • transferred
  • conduction/ radiation
  • thermal mass
  • surface warms up
  • slowly delivered
  • building
  • hours later

Questão 30

Questão
[blank_start]Indirect gain system[blank_end]- design considerations -wall facing the [blank_start]sun[blank_end] should be a [blank_start]dark colour[blank_end] -[blank_start]vents closed at night[blank_end] -varying [blank_start]thicknesses for thermal storage wall[blank_end], depending on [blank_start]material[blank_end] (brick, concrete, abode, rammed earth etc.)
Responda
  • Indirect gain system
  • sun
  • dark colour
  • vents closed at night
  • thicknesses for thermal storage wall
  • material

Questão 31

Questão
[blank_start]Transparent insulation[blank_end]- Indirect solar gain -2 useful attributes 1. small [blank_start]u-value[blank_end] 2. high [blank_start]sunlight transmission[blank_end] -[blank_start]compared[blank_end] to [blank_start]traditional insulation[blank_end] it aims to [blank_start]reduce heat loss[blank_end] and [blank_start]compensate[blank_end] with [blank_start]solar gains[blank_end] plus [blank_start]contributing to heating the interior.[blank_end] How does it work? 1. [blank_start]solar rays cross[blank_end] the light [blank_start]permeable transparent insulation[blank_end] module and hit [blank_start]dark massive wall[blank_end] 2. [blank_start]solar radiation[blank_end] is [blank_start]converted[blank_end] into [blank_start]heat[blank_end] and [blank_start]stored[blank_end] in the [blank_start]wall[blank_end], which [blank_start]conducts the heat[blank_end] with [blank_start]time delay[blank_end] of several hours into the [blank_start]interior[blank_end] 3. carful cause could [blank_start]overheat during summer[blank_end], [blank_start]shading devices[blank_end] maybe [blank_start]required[blank_end]
Responda
  • Transparent insulation
  • u-value
  • sunlight transmission
  • reduce heat loss
  • compared
  • traditional insulation
  • compensate
  • solar gains
  • solar rays cross
  • permeable transparent insulation
  • dark massive wall
  • solar radiation
  • converted
  • heat
  • stored
  • wall
  • contributing to heating the interior.
  • conducts the heat
  • time delay
  • interior
  • overheat during summer
  • shading devices
  • required

Questão 32

Questão
[blank_start]Trombe wall[blank_end] case study - [blank_start]Hostel for youth education institute[blank_end] [blank_start]Thomas Herzog, Windberg[blank_end], [blank_start]Germany[blank_end] - south facade 1. [blank_start]recessed 1st floor[blank_end] 2. [blank_start]thermal storage wall[blank_end] behind [blank_start]glass[blank_end] 3. [blank_start]shading provided[blank_end] by large [blank_start]roof overhang + roll-down blinds[blank_end] [blank_start]between glass and TI[blank_end] what does TI stand for ? [blank_start]Translucent insulation[blank_end]
Responda
  • Trombe wall
  • Hostel for youth education institute
  • Thomas Herzog, Windberg
  • Germany
  • recessed 1st floor
  • thermal storage wall
  • glass
  • shading provided
  • roof overhang + roll-down blinds
  • between glass and TI
  • Translucent insulation

Questão 33

Questão
[blank_start]Isolated solar gain[blank_end] -[blank_start]solar radiation collection[blank_end] and [blank_start]storage[blank_end] are [blank_start]thermally isolated[blank_end] from the [blank_start]living spaces[blank_end] of the building 1. [blank_start]sunspace[blank_end] 2. [blank_start]conservatories[blank_end] -[blank_start]sunspace glazed room[blank_end] that is [blank_start]part[blank_end] of or [blank_start]attached[blank_end] to a [blank_start]building[blank_end] but which can be completely [blank_start]closed[blank_end] [blank_start]off[blank_end] from the main [blank_start]occupied areas[blank_end]
Responda
  • Isolated solar gain
  • solar radiation collection
  • storage
  • thermally isolated
  • living spaces
  • sunspace
  • conservatories
  • sunspace glazed room
  • part
  • attached
  • building
  • closed
  • off
  • occupied areas

Questão 34

Questão
Case study: [blank_start]Overmeyer Residence Phil Tabb[blank_end], [blank_start]Architect Golden[blank_end], [blank_start]Colorado[blank_end] -[blank_start]off-grid[blank_end] (no utility bills) -[blank_start]attached sunspace[blank_end] -operable [blank_start]clerestory windows for ventilation[blank_end] -[blank_start]stone[blank_end] and [blank_start]concrete block for thermal mass[blank_end] -[blank_start]photovoltaic panels[blank_end] -[blank_start]wood stove[blank_end]
Responda
  • Overmeyer Residence Phil Tabb
  • Architect Golden
  • Colorado
  • off-grid
  • attached sunspace
  • clerestory windows for ventilation
  • stone
  • concrete block for thermal mass
  • photovoltaic panels
  • wood stove

Questão 35

Questão
[blank_start]Isolated solar gain[blank_end]-functions of space 1. [blank_start]buffer space[blank_end] -intermediate [blank_start]space[blank_end] between [blank_start]inside[blank_end] and [blank_start]outside[blank_end] -[blank_start]adding another layer[blank_end] to buildings [blank_start]envelope[blank_end], [blank_start]thermal buffer[blank_end] -[blank_start]shelter building envelope[blank_end] from wind chill, rain. more important in northern wind exposed locations 2. [blank_start]pre-heated ventilation[blank_end] - [blank_start]openable vents[blank_end] in [blank_start]walls[blank_end] at [blank_start]top of sunspace[blank_end] to allow [blank_start]warm air flow[blank_end] in [blank_start]adjoining spaces[blank_end] -[blank_start]cool air returned[blank_end] from [blank_start]living spaces via lower vents[blank_end] and [blank_start]heated[blank_end] as part of [blank_start]convective loop[blank_end], called [blank_start]thermosyphonic system[blank_end] -[blank_start]mechanical ventilation[blank_end] [blank_start]increase penetration of pre-heated air[blank_end] deeper into [blank_start]adjoining rooms[blank_end] 3. [blank_start]thermal mass/ storage wall[blank_end] - [blank_start]day warm air[blank_end] comes through [blank_start]vents[blank_end] to [blank_start]heat up space[blank_end] -[blank_start]night[blank_end] when the air gets cold [blank_start]vents are closed[blank_end] and [blank_start]heat is transferred[blank_end] to [blank_start]living spaces[blank_end] through [blank_start]thermal storage wall[blank_end] separating the sunsapce from living space.
Responda
  • Isolated solar gain
  • buffer space
  • pre-heated ventilation
  • thermal mass/ storage wall
  • space
  • inside
  • outside
  • adding another layer
  • envelope
  • thermal buffer
  • shelter building envelope
  • openable vents
  • walls
  • top of sunspace
  • warm air flow
  • adjoining spaces
  • cool air returned
  • living spaces via lower vents
  • heated
  • thermosyphonic system
  • convective loop
  • mechanical ventilation
  • increase penetration of pre-heated air
  • adjoining rooms
  • day warm air
  • vents
  • heat up space
  • night
  • vents are closed
  • heat is transferred
  • living spaces
  • thermal storage wall

Questão 36

Questão
[blank_start]Isolated solar gain[blank_end]- design considerations 1. [blank_start]double glazing[blank_end] should be considered ([blank_start]reduce conductive losses[blank_end]) 2. the [blank_start]darker the internal surfaces[blank_end] of the sunspace, the [blank_start]more effective[blank_end] the ability of [blank_start]thermal mass[blank_end] to [blank_start]store heat during the day[blank_end] 3. [blank_start]consideration[blank_end] need when choosing sunspace with [blank_start]vegetation and pot-plants[blank_end] ([blank_start]foliage[blank_end] can [blank_start]obscure and shade main floor and wall)[blank_end] 4. [blank_start]easily overheat in summer[blank_end] - can be [blank_start]resolved by shading[blank_end] via external shading from [blank_start]roof overhang[blank_end] or [blank_start]adjacent louvers[blank_end] -[blank_start]deciduous trees[blank_end] (leafless trees will continue to shade to an extent) -[blank_start]ventilating[blank_end] the sunspace by placing [blank_start]vents[blank_end] to the [blank_start]exterior through the roof[blank_end]
Responda
  • Isolated solar gain
  • double glazing
  • reduce conductive losses
  • darker the internal surfaces
  • more effective
  • thermal mass
  • store heat during the day
  • consideration
  • vegetation and pot-plants
  • foliage
  • obscure and shade main floor and wall)
  • easily overheat in summer
  • resolved by shading
  • roof overhang
  • adjacent louvers
  • deciduous trees
  • ventilating
  • vents
  • exterior through the roof

Questão 37

Questão
Isolated gain system: Case study 1.[blank_start]ECOS homes[blank_end], [blank_start]Great Bow yard[blank_end], UK 2. Office and housing project, [blank_start]Gleisdorf, Austria, Reinberg Architects[blank_end]
Responda
  • ECOS homes
  • Gleisdorf, Austria, Reinberg Architects
  • Great Bow yard

Questão 38

Questão
Thermal mass in commercial buildings [blank_start]cost transfer[blank_end] -[blank_start]integrated system approach[blank_end] -[blank_start]enevelope/ architectural[blank_end] -features vs infrastructure [blank_start]Capital cost savings[blank_end] -[blank_start]smaller equipments sizes[blank_end] -[blank_start]less mechnical equipment[blank_end] -[blank_start]smaller mechanical rooms[blank_end] [blank_start]Operating cost savings[blank_end] -[blank_start]reduced energy use[blank_end] [blank_start]peak load shifting[blank_end]
Responda
  • cost transfer
  • Capital cost savings
  • Operating cost savings
  • integrated system approach
  • enevelope/ architectural
  • smaller equipments sizes
  • less mechnical equipment
  • smaller mechanical rooms
  • reduced energy use
  • peak load shifting

Semelhante

Guia de Estudos para o ENEM 2014
Alessandra S.
Termos téc. Enfermagem
Letícia Silva
Simulado Geografia
Marina Faria
CICLO CELULAR e MITOSE
João Ramalho
História da Arte - Barroco
Bruno Torrezan
Revisão de Sociologia 1a. série do Ensino Médio
e-pn-2007@hotmail.co
Fluxograma
Herminio Edson
Geologia 10º Ano
Maria Ferreira
Plano de estudos ENEM - Parte 2 *Exatas/Biológicas
sarahnjife
Vitaminas
Júlia Figueiredo
Redação Oficial
Lavs Agah