A& P Test #3 - 6.28

Descrição

Completed Chapters 20, 19, and 10 so far.
Rachel Nall
Quiz por Rachel Nall, atualizado more than 1 year ago
Rachel Nall
Criado por Rachel Nall aproximadamente 8 anos atrás
51
3

Resumo de Recurso

Questão 1

Questão
[blank_start]Cardiac output[blank_end] is the quantity of blood pumped each minute into the aorta by the heart.
Responda
  • Cardiac output
  • Venous return
  • Cardiac index
  • Peripheral resistance

Questão 2

Questão
[blank_start]Venous return[blank_end] is the quantity of blood flowing from the veins into the right atrium (RA) each minute.
Responda
  • Venous return
  • Cardiac output
  • Cardiac index
  • Stroke volume

Questão 3

Questão
VR and CO must [blank_start]equal[blank_end] each other except for a few heartbeats at a time when blood is temporarily stored in or removed from the heart and lungs.
Responda
  • be less than
  • be greater than
  • equal
  • add to

Questão 4

Questão
Which of the following factors does NOT affect cardiac output?
Responda
  • Basal metabolic rate
  • Gender
  • Age
  • Body habitus
  • Increased energy requirements (exercise)

Questão 5

Questão
Cardiac Index = [blank_start]CO[blank_end] / [blank_start]m2[blank_end] m2 = [blank_start]Body Surface Area[blank_end]
Responda
  • CO
  • Stroke volume
  • m2
  • Venous return
  • Body Surface Area

Questão 6

Questão
The average CO for a resting adult is [blank_start]5[blank_end] liters/minute The average CI for a resting adult is [blank_start]3[blank_end] liters/minute/m2
Responda
  • 5
  • 3

Questão 7

Questão
At what age is a person's cardiac function the highest?
Responda
  • 10
  • 20
  • 30
  • 40

Questão 8

Questão
Peripheral circulatory factors that affect the flow of blood from the veins into the heart provide the primary control of CO.
Responda
  • True
  • False

Questão 9

Questão
Blood flow does not increase in proportion to each tissue's metabolism.
Responda
  • True
  • False

Questão 10

Questão
If arterial BP is constant, long-term CO will typically have an [blank_start]inverse[blank_end] relationship to total peripheral resistance. This is a form of [blank_start]Ohm's[blank_end] law.
Responda
  • inverse
  • proportional
  • Ohm's
  • Reynold's
  • Frank-Starling

Questão 11

Questão
The Frank-Starling law states that the [blank_start]stroke volume[blank_end] of the heart increases in response to an an increase in the volume of blood filling the heart (end diastolic volume), when all other factors remain constant. Another way to state this: a large volume of blood flows into the ventricle, the blood will stretch the walls of the heart, causing a greater expansion during diastole, which in turn increases the force of the contraction and thus the quantity of blood that is pumped into the aorta during diastole. The increased volume of blood stretches the ventricular wall, causing cardiac muscle to contract more forcefully.
Responda
  • cardiac output
  • cardiac index
  • stroke volume

Questão 12

Questão
According to the Frank-Starling curve, the normal heart can pump an amount of venous return up to what times the normal venous return before the heart becomes a limiting factor in the control of cardiac output?
Responda
  • 2
  • 2.5
  • 3
  • 3.5

Questão 13

Questão
Sympathetic stimulation and parasympathetic inhibition can significantly increase heart rate and contractility. The result of this combination is known as what kind of heart?
Responda
  • Effective
  • Hypoeffective
  • Hypereffective
  • Optimized

Questão 14

Questão
A number of factors can lead to a hypoeffective heart. Examples include increased arterial pressure (afterload), due to hypertension, valvular heart disease, and congenital heart disease. Select other causes of the hypoeffective heart.
Responda
  • Sympathetic nervous system inhibition
  • Sympathetic nervous system excitation
  • Pathological dysrhythmias
  • Acute coronary syndrome

Questão 15

Questão
The nervous system is instrumental in maintaining arterial blood pressure when peripheral blood vessels are [blank_start]dilated[blank_end] and venous return and CO [blank_start]increase[blank_end].
Responda
  • dilated
  • constricted
  • increase
  • decrease
  • stay the same

Questão 16

Questão
Fill in the blanks for the following: Intense exercise [blank_start]increases[blank_end] SNS outflow, causing large vein [blank_start]constriction[blank_end], and [blank_start]increase[blank_end] in heart rate and an [blank_start]increase[blank_end] in contractility.
Responda
  • increases
  • decreases
  • constriction
  • dilation
  • increase
  • decrease
  • increase
  • decrease

Questão 17

Questão
Beriberi disease leads to a manifestation of insufficient dietary vitamin B1 (thiamine). The results of auto-regulatory compensation [blank_start]increases[blank_end] cardiac output.
Responda
  • increases
  • decreases
  • maintains

Questão 18

Questão
Select the other pathologic states that increase cardiac output:
Responda
  • Arteriovenous (AV) fistula
  • Hypothyroidism
  • Hyperthyroidism
  • Anemia

Questão 19

Questão
Conditions that produce low CO generally fall into one of two categories: 1. Abnormalities that [blank_start]reduce[blank_end] the pumping effectiveness of the heart. 2. Abnormalities that cause venous return to [blank_start]fall too low[blank_end].
Responda
  • reduce
  • increase
  • fall too low
  • become too high

Questão 20

Questão
[blank_start]Hemorrhage[blank_end] is the most common non-cardiac peripheral factor that decreases venous return.
Responda
  • Hemorrhage

Questão 21

Questão
Non-cardiac factors that decrease cardiac output due to decreased venous return include:
Responda
  • Obstruction of the large veins
  • Decreased tissue mass
  • Arteriovenous Fistula
  • Hypothyroidism

Questão 22

Questão
The two primary factors that must be evaluated in the quantitative analysis of CO regulation are:
Responda
  • The pumping ability of the heart (cardiac output)
  • The heart's end-diastolic volume (preload)
  • Venous return curves
  • The pressure on the wall of the left ventricle during ejection (afterload)

Questão 23

Questão
The normal external pressure on the heart is equal to the normal [blank_start]intrapleural[blank_end] pressure (which is -4 mmHg).
Responda
  • intrapleural

Questão 24

Questão
A shift to the [blank_start]right[blank_end] reflects the increase RA pressure that will be required to fill the cardiac chambers to offset the [blank_start]increase[blank_end] in external pressure.
Responda
  • right
  • left
  • increase
  • decrease

Questão 25

Questão
Select the following factors that can shift the CO curve:
Responda
  • Cyclical changes in intrapleural pressure during respiration
  • Breathing against a negative pressure
  • Positive pressure breathing
  • Opening the thoracic cage
  • Cardiac tamponade

Questão 26

Questão
Principle factors that affect VR to the heart from the systemic circulation: ◦ 1. [blank_start]RA pressure[blank_end]  Exerts a backward force on the veins to impede flow of blood from the veins into the RA ◦ 2. The degree of filling of the [blank_start]systemiccirculation[blank_end]  Measured by the mean systemic filling pressure (Psf) which forces the systemic blood toward the heart.
Responda
  • RA pressure
  • systemic circulation

Questão 27

Questão
[blank_start]Psf[blank_end] is the abbreviation for mean systemic filling pressure.
Responda
  • Psf

Questão 28

Questão
The principle factor that affects Venous Return to the heart from the systemic circulation is resistance to blood flow between the peripheral vessels and the RA.
Responda
  • True
  • False

Questão 29

Questão
The normal venous return curve demonstrates that if the pumping ability of the heart decreases, the RA pressure will [blank_start]rise[blank_end], and the backward force of this rising pressure on the systemic vasculature will [blank_start]decrease[blank_end] VR.
Responda
  • rise
  • fall
  • stay the same
  • decrease
  • increase

Questão 30

Questão
Without compensatory ANS reflexes, VR decreases to zero when the RA pressure rises to what number in mmHg?
Responda
  • 4
  • 5
  • 6
  • 7

Questão 31

Questão
When both arterial and venous pressure flow in the systemic circulation [blank_start]ceases[blank_end].
Responda
  • ceases
  • increases
  • decreases

Questão 32

Questão
Most of the resistance to venous return occurs where?
Responda
  • Arterioles
  • Veins
  • Smaller arteries

Questão 33

Questão
Select what can compensate in resistance to venous return:
Responda
  • `small artery
  • aorta
  • arterioles
  • venuoles

Questão 34

Questão
What is another word for preload?
Responda
  • End-diastolic pressure
  • Venous return
  • Afterload

Questão 35

Questão
Regardless of the chamber, the [blank_start]preload[blank_end] is related to the chamber volume just prior to contraction.
Responda
  • preload

Questão 36

Questão
Factors that increase preload include all except the following:
Responda
  • Increased venous return
  • Decreased venous compliance
  • Decreased thoracic blood volume
  • Increased thoracic blood volume

Questão 37

Questão
What is the pressure within the thoracic space between the organs (lungs, heart, vena cava) and the chest wall?
Responda
  • intrapleural pressure (Ppl)
  • Preload
  • Pulmonary filling pressure
  • intrarterial pressure

Questão 38

Questão
[blank_start]Skeletal muscle[blank_end] has to do with venous return because the one-way valves in the veins of the legs and arms are instrumental in directing blood flow away from the limbs and towards the heart. Veins within large skeletal muscle groups also undergo compression as muscles contract and decompress as the muscles relax.
Responda
  • Skeletal muscle
  • Cardiac muscle
  • Smooth muscle

Questão 39

Questão
The Oxygen Fick Method, indicator dilution method, echocardiography, and ventriculogram are all methods of measuring [blank_start]cardiac output[blank_end].
Responda
  • cardiac output

Questão 40

Questão
The Oxygen Fick Principle states that: [blank_start]Cardiac Output[blank_end] (L/min) = 02 absorbed per minute by the lungs (mL/min) / arteriovenous 02 difference (mL/L of blood)
Responda
  • Cardiac Output

Questão 41

Questão
Place in order the electrical pathways of the heart. [blank_start]3[blank_end] AV node [blank_start]1[blank_end] SA node [blank_start]2[blank_end] Internodal pathway [blank_start]4[blank_end] Left and right bundles of Purkinje fibers
Responda
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

Questão 42

Questão
Identify the pace of each area of the heart. SA Node: [blank_start]70 - 80 BPM[blank_end] AV Node: [blank_start]40 - 60 BPM[blank_end] Purkinje Fibers: [blank_start]15 - 40 BPM[blank_end]
Responda
  • 70 - 80 BPM
  • 40 - 60 BPM
  • 15 - 40 BPM

Questão 43

Questão
Heart muscle _________________.
Responda
  • is single-nucleated
  • lacks gap junctions
  • is syncytial
  • lacks striations

Questão 44

Questão
[blank_start]Sinus Node[blank_end] (where normal rhythmical impulse is generated) -> [blank_start]Internodal Pathways[blank_end] (conduct impulse from SA node to AV node) -> [blank_start]AV Node[blank_end] (delays impulse from atria to ventricles) -> [blank_start]AV Bundle[blank_end] (conducts impulse from atria to ventricles) -> Right & Left Bundle branches of Purkinje fibers (conduct impulse to ALL parts of the [blank_start]ventricles[blank_end])
Responda
  • Internodal Pathways
  • Sinus Node
  • AV Node
  • AV Bundle
  • ventricles

Questão 45

Questão
There are almost no contractile fibers in the SA node.
Responda
  • True
  • False

Questão 46

Questão
The SA node is located in the [blank_start]superior posterolateral wall[blank_end] of the right atrium, slightly below and lateral to the opening of the [blank_start]SVC[blank_end].
Responda
  • superior posterolateral wall
  • SVC

Questão 47

Questão
Which of the following is NOT a type of cardiac muscle ion channel?
Responda
  • Fast sodium channels
  • L-type calcium channels
  • Ligand-gated calcium channels
  • Potassium channels

Questão 48

Questão
The SA node has [blank_start]spontaneous[blank_end] depolarization.
Responda
  • spontaneous

Questão 49

Questão
Select the membrane potential for the SA node.
Responda
  • -40 to -50
  • -30 to -40
  • -60 to -70
  • -55 to -60

Questão 50

Questão
At what membrane threshold potential do slow Na-Ca channels to open up?
Responda
  • -30 mV
  • -40 mV
  • -50 mV
  • -60 mV

Questão 51

Questão
Place what is happening in the SA node with its appropriate location.
Responda
  • Slow depolarization due to Na & Ca leak.
  • Na-Ca channels open.
  • K channels open during repolarization

Questão 52

Questão
Match the channels with the appropriate description: [blank_start]I na (Fast Na Channels)[blank_end] Rapid depolarizing phase of AP • Atrial and ventricular muscle & in Purkinje fibers • (inactive at -55) [blank_start]Slow Na Current:[blank_end] inherent leakiness of the SA node is responsible for self-excitation [blank_start]K+ Current Ik[blank_end] Responsible for repolarizing phase of AP in ALL cardiomyocytes [blank_start]Ca2+ current(ICa)[blank_end] •Depolarizing phase of AP • SA node and AV node • Also triggers contractions in all cardiomyocytes
Responda
  • I na (Fast Na Channels)
  • Slow Na Current:
  • K+ Current Ik
  • Ca2+ current(ICa)

Questão 53

Questão
•[blank_start]Self-excitation[blank_end] to cause AP (leaky Na+ & Ca channels) -> Recovery from AP (K+ channels open) -> [blank_start]Hyperpolarization[blank_end] after AP is over (K+ channels remain open) -> Drift of the "Resting" Potential to [blank_start]Threshold[blank_end] (leaky Na+ & Ca channels) -> [blank_start]Re-excitation[blank_end] to elicit another cycle
Responda
  • Self-excitation
  • Hyperpolarization
  • Threshold
  • Re-excitation

Questão 54

Questão
The [blank_start]inherent leakiness[blank_end] of the sinus nodal fibers to sodium and calcium ions causes their self-excitation.
Responda
  • inherent leakiness

Questão 55

Questão
The SA node has no true resting potential.
Responda
  • True
  • False

Questão 56

Questão
Label the contractile cell or autorhythmic cell.
Responda
  • Autorhythmic cell
  • Contractile cell
  • Autorhythmic cell
  • Contractile cell

Questão 57

Questão
Assign the appropriate label to what is happening in the ventricular myocyte.
Responda
  • Na channels open
  • Na channels close
  • Ca channels open; fast K channels close
  • Ca channels close; slow K channels open
  • Resting potential

Questão 58

Questão
[blank_start]Bachman's Bundle:[blank_end] Anterior interartrial band carries impulses to left atrium.
Responda
  • Bachman's Bundle:

Questão 59

Questão
The delay in the AV node is:
Responda
  • 0.04 seconds
  • 0.09 seconds
  • 0.10 seconds
  • .20 seconds

Questão 60

Questão
The delay in the AV bundle is:
Responda
  • .04
  • 0.09
  • 0.10
  • 0.14

Questão 61

Questão
The total delay in AV node/AV bundle system is [blank_start]0.13[blank_end] seconds.
Responda
  • 0.13

Questão 62

Questão
The [blank_start]AV node[blank_end] is located in the posterior wall of the right atrium immediately behind the tricuspid valve
Responda
  • AV node

Questão 63

Questão
The Bundle branches and then divide into extensive system of [blank_start]Purkinje fibers[blank_end]
Responda
  • Purkinje fibers

Questão 64

Questão
Transmission time between A-V bundles and fibers is:
Responda
  • 0.04 seconds
  • 0.10 seconds
  • 0.90 seconds
  • 0.06 seconds

Questão 65

Questão
The Purkinje fibers transmit impulses [blank_start]faster[blank_end] than other fibers.
Responda
  • faster
  • slower

Questão 66

Questão
The Purkinje fibers are [blank_start]larger[blank_end] than ventricular muscle fibers.
Responda
  • larger
  • smaller

Questão 67

Questão
The Purkinje fibers have [blank_start]high[blank_end] levels of permeability of the gap junctions between successive cells in the conducting pathways.
Responda
  • high
  • low

Questão 68

Questão
The [blank_start]SA Node[blank_end] is the pacemaker
Responda
  • SA Node

Questão 69

Questão
SA node discharges both the AV node & Purkinje fibers [blank_start]before[blank_end] either of these can undergo self-excitation.
Responda
  • after
  • during
  • before

Questão 70

Questão
Select the resting membrane potential of the ventricular muscle cell.
Responda
  • -55 to -60
  • -85 to -90
  • -100 to -110
  • 40 to 60

Questão 71

Questão
What doesn't happen when the AV node is blocked?
Responda
  • Impulse can’t get past atria to ventricles
  • Atria continue beating at normal SA node rate and rhythm
  • New pacemaker in Purkinje system takes over driving ventricular contraction 15 to 40 bpm
  • New pacemaker is Bachman Bundle, which takes over driving the ventricular contraction.

Questão 72

Questão
Sudden AV block: Delay in pickup of the heart beat is the “[blank_start]Stokes-Adams[blank_end]” syndrome
Responda
  • Stokes-Adams

Questão 73

Questão
[blank_start]Parasympathetic[blank_end] (vagal) activation decreases conduction velocity (negative [blank_start]dromotropy[blank_end]) at the AV node • Decreases slope of Phase [blank_start]4[blank_end] • leads to [blank_start]slower[blank_end] depolarization of adjacent cells, and reduced velocity of conduction
Responda
  • Parasympathetic
  • Sympathetic
  • dromotropy
  • inotropy
  • 0
  • 3
  • 4
  • slower
  • faster

Questão 74

Questão
Parasympathetic fibers in the heart are [blank_start]muscarinic[blank_end].
Responda
  • nicotinic
  • muscarinic

Questão 75

Questão
Acetylcholine released by [blank_start]vagus[blank_end] nerve • Binds to cardiac [blank_start]muscarini[blank_end]c receptors • [blank_start]Decreases[blank_end] intracellular cAMP
Responda
  • vagus
  • muscarinic
  • Decreases

Questão 76

Questão
[blank_start]Vagal[blank_end] stimulation releases acetylcholine. This goes to muscarinic receptors that decrease cAMP. This causes increased K permeability, which decreases transmission of impulses. Ventricular escape occurs.
Responda
  • Vagal
  • Adrenergic
  • Sympathetic

Questão 77

Questão
[blank_start]Digitalis[blank_end] increases the vagal activity to the heart.
Responda
  • Digitalis

Questão 78

Questão
Sympathetic nerves release [blank_start]norepinephrine[blank_end].
Responda
  • norepinephrine
  • aCH
  • cAMP

Questão 79

Questão
[blank_start]Sympathetic[blank_end] activation increases conduction velocity in the AV node • Rate of depolarization increased • i.e. slope of Phase [blank_start]0[blank_end] increase • Leads to more rapiddepolarization of adjacent cellsàmore rapid conduction of action potentials • [blank_start]Positive[blank_end] dromotropy
Responda
  • Sympathetic
  • Parasympathetic
  • 0
  • 3
  • 4
  • Positive
  • Negative

Questão 80

Questão
Normal delay of conduction thru AV node reducedàtime between atrial and ventricular contraction reduced • Increase in AV conduction velocity manifests as [blank_start]decrease[blank_end] in P-R interval on EKG
Responda
  • decrease
  • increase

Questão 81

Questão
[blank_start]Esmolol[blank_end] is a beta blocker that's metabolized in the blood.
Responda
  • Esmolol

Questão 82

Questão
Parasympathetic Nerves • Releases [blank_start]acetylcholine[blank_end] • Binds to [blank_start]muscarinic[blank_end] • [blank_start]Increases[blank_end] conductivity of K and [blank_start]decreases[blank_end] conductivity of Ca2+ • [blank_start]Decreases[blank_end] heart rate of rhythm and excitability of AV junctional fibers and AV node • Excitatory signals are no longer transmitted into the ventricles.
Responda
  • acetylcholine
  • norepinephrine
  • muscarinic
  • nicotinic
  • Decreases
  • Increases
  • decreases
  • increases
  • Decreases
  • Increases

Questão 83

Questão
SympatheticNerves • Releases [blank_start]norepinephrine[blank_end] at sympathetic endings. • Binds to [blank_start]β1[blank_end] receptors • [blank_start]Increases[blank_end] the rate of sinus nodal discharge. • [blank_start]Increases[blank_end] the overall heart activity. • [blank_start]Increases[blank_end] the permeability of Na+ and Ca2+ ions.
Responda
  • acetylcholine
  • norepinephrine
  • β1
  • β2
  • Decreases
  • Increases
  • Decreases
  • Increases
  • Decreases
  • Increases

Questão 84

Questão
Phase 0 is [blank_start]depolarization[blank_end].
Responda
  • depolarization

Questão 85

Questão
Conduction velocity is altered by: Sympathetic stimulation ([blank_start]increases[blank_end]) Vagal stimulation ([blank_start]decreases[blank_end]) Ischemia/Hypoxia: [blank_start]decreases[blank_end] Drugs (adrenergic and cholinergic): increase or decrease
Responda
  • decreases
  • increases
  • decreases
  • increases
  • decreases
  • increases

Questão 86

Questão
Label the effects of the parasympathetic and sympathetic nerve activations appropriately.
Responda
  • Sympathetic
  • Vagal/Parasympathetic

Questão 87

Questão
Key Difference in Pacemaker Cell AP •The higher the slope of Phase [blank_start]4[blank_end], the higher the rate •Vagal stimulation [blank_start]slows[blank_end] phase 4 depolarization •Rate slows •Catecholamines speed it up
Responda
  • 0
  • 3
  • 4
  • slows
  • speeds

Questão 88

Questão
Essentially/primary hypertension is [blank_start]95[blank_end] percent of cases. Secondary/demonstrable causes are [blank_start]5[blank_end] percent of cases.
Responda
  • 95
  • 5

Questão 89

Questão
[blank_start]Salt[blank_end] and H2O retention is the final common pathway shared by all of these etiologies; Interplay of these 2 determined by kidneys
Responda
  • Salt

Questão 90

Questão
Extracellular fluid volume increases, then arterial pressure [blank_start]increases[blank_end] • increase in arterial pressure, then the kidneys to [blank_start]lose[blank_end] Na+ and water then returns arterial BP to return to normal
Responda
  • decreases
  • increases
  • lose
  • retain

Questão 91

Questão
The [blank_start]renal function curve[blank_end] depicts the effect of increasing arterial BP on urinary output (UOP).
Responda
  • renal function curve

Questão 92

Questão
Fill in the blanks for the renal function curve. • [blank_start]50[blank_end] mm Hg = UOP = 0 • [blank_start]100[blank_end] mm Hg = normal UOP • [blank_start]200[blank_end] mm Hg = 6-8 times normal
Responda
  • 50
  • 100
  • 150
  • 200

Questão 93

Questão
Over time, output must = intake • The point at which this occurs is where the two lines intersect is known as the [blank_start]equilibrium point[blank_end]. • The equilibrium point tends to be at an arterial BP of [blank_start]100[blank_end] mm Hg
Responda
  • equilibrium point
  • 100

Questão 94

Questão
If arterial BP [blank_start]increases[blank_end] then the loss of H2O and Na+ will be greater than the intake → a [blank_start]decrease[blank_end] in fluid volume and BP will [blank_start]decrease[blank_end] until the arterial pressure falls exactly back to the equilibrium point
Responda
  • decreases
  • increases
  • decrease
  • increase
  • decrease
  • increase

Questão 95

Questão
If arterial BP falls below the equilibrium point, intake of Na+ and H2O will be [blank_start]greater[blank_end] than the output → an [blank_start]increase[blank_end] in fluid volume and BP until the arterial pressure returns exactly back to the equilibrium point
Responda
  • greater
  • less
  • decrease
  • increase

Questão 96

Questão
This equilibrium point for the kidneys will occur as long as (1) [blank_start]renal output[blank_end] of salt and water and (2) [blank_start]intake[blank_end] of salt and water remain in balance
Responda
  • renal output
  • intake

Questão 97

Questão
2 primary ways to change long-term arterial pressure levels • Shifting [blank_start]equilibrium point[blank_end] of the renal output curve to a different pressure • Changing level of [blank_start]H2O[blank_end] and Na+ intake
Responda
  • equilibrium point
  • H2O

Questão 98

Questão
[blank_start]Renal artery stenosis[blank_end] can cause the renal output curve and equilibrium point to shift to the right.
Responda
  • Renal artery stenosis

Questão 99

Questão
As the intake of water/salt [blank_start]increases[blank_end], the equilibrium point shifts to the right (160 mm Hg) • If there were a [blank_start]decrease[blank_end] in water/salt intake, the equilibrium point and the arterial BP would also decrease
Responda
  • decreases
  • increases
  • decrease
  • increase

Questão 100

Questão
Effect of Total Peripheral Resistance TPR Acutely, if TPR [blank_start]increases[blank_end], arterial BP [blank_start]increases[blank_end] • Arterial pressure = CO x TPR
Responda
  • decreases
  • increases
  • decreases
  • increases

Questão 101

Questão
If renal vascular resistance (RVR) is NOT affected (i.e., increased when TPR is increased), then the equilibrium point for BP [blank_start]will not[blank_end] change
Responda
  • will
  • will not

Questão 102

Questão
Changes in TPR do not typically affect the [blank_start]long-term[blank_end] arterial pressure level
Responda
  • long-term
  • short-term

Questão 103

Questão
Which of the following conditions does NOT have a long-term effect on TPR and therefore equilibrium point.
Responda
  • Beriberi
  • AV shunts
  • Pulmonary disease
  • Paget's disease
  • Diabetes mellitus
  • Hypothyroidism

Questão 104

Questão
An increase in TPR without any change in renal resistance would:
Responda
  • Transiently increase arterial pressure
  • Transiently increase sodium and water excretion
  • Decrease extracellular fluid (ECF)
  • All of the above

Questão 105

Questão
autoregulation— blood volume has [blank_start]increased[blank_end] then tissue blood flow [blank_start]increases[blank_end] throughout body; [blank_start]constricts[blank_end] blood vessels everywhere
Responda
  • decreased
  • increased
  • decreases
  • increases
  • constricts
  • vasodilates

Questão 106

Questão
As Na+ intake increases, two things happen: • ECF osmolality [blank_start]increases[blank_end] → stimulation of the thirst center to drink more water to return the ECF salt concentration to normal • This excess water intake → ↑ ECFV • The increased osmolality also stimulates the release of [blank_start]ADH[blank_end] → kidney reabsorption of H2O → ↑ ECFV
Responda
  • decreases
  • increases
  • ADH
  • Angiotensin
  • Aldosterone

Questão 107

Questão
The first stage in a volume-loading hypertension is an increase in [blank_start]cardiac output[blank_end]. The reduction in total peripheral resistance is more related to a [blank_start]baroreceptor[blank_end] effect. The initial increase in BP is the result of the rise in CO.
Responda
  • cardiac output
  • baroreceptor

Questão 108

Questão
2nd stage – • HTN exists • CO returns to near [blank_start]normal[blank_end] • At same time [blank_start]increased[blank_end] TPR occurs
Responda
  • normal
  • increased

Questão 109

Questão
Which of the following doesn't happen several weeks following initial-onset volume loading?
Responda
  • Hypertension
  • Significant increase in TPR
  • Nearly complete return of ECFV, BV, and CO back to normal.
  • Significant decrease in TPR.

Questão 110

Questão
Angiotensinogen-converting enzyme (ACE) lives mostly in where?
Responda
  • Liver
  • Lungs
  • Kidneys
  • Heart

Questão 111

Questão
Where is renin mostly made and stored?
Responda
  • Liver
  • Lungs
  • Kidneys
  • Heart

Questão 112

Questão
Which enzyme in the blood and tissues inactivates angiotensin II?
Responda
  • Angiotensin I
  • Renin
  • Angiotensinases
  • Aldosterone

Questão 113

Questão
Angiotensin Effect on Retention of Salt/Water By Kidneys 1. Direct renal effects • Renal arteriole [blank_start]constriction[blank_end] • Less blood flow thru kidneysàless fluid filtered thru glomeruli into the tubules • Slowedbloodflowresultsinlessperitubularcapillariespressureàrapidreabsorption of fluid from tubules • Act directly on tubular cells to#tubular [blank_start]reabsorption[blank_end] of sodium & water
Responda
  • constriction
  • reabsorption

Questão 114

Questão
causes aldosterone secretion by adrenal glands • Results in significant [blank_start]increase[blank_end] in sodium reabsorption by renal tubules then H2Oretention, which leads to [blank_start]increase[blank_end] in fluid volume and an increase in BP
Responda
  • increase
  • increase

Questão 115

Questão
Which of the following does not increase renal excretion of Na and water-increasing BP?
Responda
  • Angiotensin II
  • Aldosterone
  • Atrial natriuretic peptide
  • Sympathetic nervous system
  • Endothelin

Questão 116

Questão
Factors that decrease renal excretion of Na & Water to increase BP: 1. [blank_start]Aldosterone[blank_end] 2. [blank_start]Angiotensin II[blank_end] 3. [blank_start]Endothelin[blank_end] 4. [blank_start]Sympathetic nervous system[blank_end] Factors that Increase Renal Excretion of Na and Water, Reducing Blood Pressure 1. [blank_start]Atrial natriuretic peptide[blank_end] 2. [blank_start]Dopamine[blank_end] 3. [blank_start]Nitric oxide[blank_end]
Responda
  • Aldosterone
  • Angiotensin II
  • Endothelin
  • Sympathetic nervous system
  • Atrial natriuretic peptide
  • Dopamine
  • Nitric oxide

Questão 117

Questão
Atrial natriuretic peptide is secreted from the [blank_start]right atrium[blank_end].
Responda
  • right atrium

Questão 118

Questão
[blank_start]Angiotensin II[blank_end] • Constricts renal arteriolesàless blood flow to kidneys • Stimulates aldosterone secretionàincreases Na+ reabsorption • Directly stimulates Na+ reabsorption in proximal tubules, loops of Henle, distal tubules and collecting tubules [blank_start]• Aldosterone[blank_end] • secreted by adrenal glands • Sodium reabsorption which is followed by water reabsorption • [blank_start]Sympathetic nervous activity[blank_end] • Constricts renal arterioles, reducing GFR; low levels of SNS activation acts on alpha receptors on renal tubular cells increasing Na reabsorption; also stimulates release of renin and AGII formation • [blank_start]Endothelin[blank_end] • Amino peptide in endothelial cells released in response to vessel trauma • Intense vasoconstriction
Responda
  • Angiotensin II
  • • Aldosterone
  • Sympathetic nervous activity
  • Endothelin

Questão 119

Questão
[blank_start]Atrial natriuretic peptide[blank_end] ¤ Causes decreased Na and H2O reabsorptionà#UOPàreturn blood volume to normalà$BP ̈[blank_start]Nitric oxide[blank_end] ¤Vasodilator ¤ Basal level of NO in kidneys, helps maintain renal vasodilation allowing normal renal excretion of salt/water ̈[blank_start]Dopamine[blank_end] ¤ At low doses, stimulates dopamine- 1 receptors nCause renal vessel vasodilation nStimulates natriuresis
Responda
  • Atrial natriuretic peptide
  • Nitric oxide
  • Dopamine

Questão 120

Questão
Use the dropdown to choose the appropriate stage in the cardiac cycle: [blank_start]Diastole[blank_end]: Muscle re-establishing Na/K/Ca gradient [blank_start]Systole[blank_end]: Contraction of muscle & ejection of blood from chambers [blank_start]Systole[blank_end]: Muscle stimulated by action potential [blank_start]Diastole[blank_end]: Relaxation of muscle & filling chambers with blood
Responda
  • Diastole
  • Systole
  • Diastole
  • Systole
  • Diastole
  • Systole
  • Diastole
  • Systole

Questão 121

Questão
Drag and drop to the appropriate location on the cardiac cycle: [blank_start]P-wave[blank_end]: Also known as the atrial wave, represents the spread of depolarization [blank_start]QRS[blank_end]: Ventricle depolarization [blank_start]T-wave[blank_end]: Ventricular repolarization
Responda
  • P-wave
  • QRS
  • T-wave

Questão 122

Questão
Choose if the following descriptions match the atria or the ventricles: [blank_start]Atria[blank_end]: Contraction enhances ventricular filling. [blank_start]Ventricles[blank_end]: Blood flows from the RV and LV into the pulmonary artery and aorta [blank_start]Atria[blank_end]: Blood flows from the IVC and SVC
Responda
  • Atria
  • Ventricles
  • Atria
  • Ventricles
  • Atria
  • Ventricles

Questão 123

Questão
True or false: The amount of blood pumped out of the RV will always equal the amount of blood pumped out of the LV.
Responda
  • True
  • False

Questão 124

Questão
The fullest the ventricle will be is the end diastolic volume (EDV). This number is what?
Responda
  • 40 to 50 mL
  • 50 to 100 mL
  • 110 to 120 mL
  • 150 to 200 mL

Questão 125

Questão
The emptiest the ventricle will be is the end systolic volume (ESV). What number is this?
Responda
  • 40 to 50 mL
  • 50 to 100 mL
  • 100 to 150 mL
  • 150 to 200 mL

Questão 126

Questão
The comparison of the end diastolic volume to the end systolic volume is what?
Responda
  • Total peripheral resistance
  • Pulmonary filling pressure
  • Ejection fraction or stroke volume
  • Arterial pressure

Questão 127

Questão
The average ejection fraction in a healthy adult is what?
Responda
  • 30 percent
  • 40 percent
  • 50 percent
  • 60 percent

Questão 128

Questão
Select the two factors that can change the EDV and the ESV.
Responda
  • Strength of contraction
  • Increases in diastolic filling

Questão 129

Questão
Drag and drop the appropriate part of the heart to the area it works. [blank_start]Right Ventricle (RV)[blank_end]: Deoxygenated blood from RA [blank_start]Right Atrium (RA)[blank_end]: Deoxygenated blood from IVC and SVC [blank_start]Left Ventricle (LV)[blank_end]: Oxygenated blood from LA [blank_start]Left Atrium (LA)[blank_end]: Oxygenated blood from pulmonary circulation
Responda
  • Right Ventricle (RV)
  • Right Atrium (RA)
  • Left Ventricle (LV)
  • Left Atrium (LA)

Questão 130

Questão
The atrium is the [blank_start]weaker[blank_end] pump of the heart. The [blank_start]right[blank_end] ventricle sends blood to the pulmonary circulation. The [blank_start]left[blank_end] ventricle sends blood to the peripheral circulation.
Responda
  • stronger
  • weaker
  • left
  • right
  • left
  • right

Questão 131

Questão
Name the three types of cardiac muscle in alphabetical order: [blank_start]Atrial[blank_end] muscle [blank_start]Excitatory[blank_end] / conductive muscle [blank_start]Ventricular[blank_end] muscle
Responda
  • Atrial
  • Excitatory
  • Ventricular

Questão 132

Questão
Which of the following is a difference between cardiac muscle and skeletal muscle?
Responda
  • Striations
  • Actin and myosin filaments
  • Low-Resistance intercalated disks

Questão 133

Questão
Heart muscle is a [blank_start]syncytium[blank_end] of many heart muscle cells. When one cell becomes excited the action potential spreads to all of them
Responda
  • syncytium

Questão 134

Questão
Identify the three characteristics of cardiac muscle and how an impulse travels. [blank_start]Autorhythmic cell[blank_end] [blank_start]Gap junction[blank_end] [blank_start]Contractile cell[blank_end]
Responda
  • Autorhythmic cell
  • Nerve
  • Gap junction
  • Neuromuscular junction
  • Contractile cell
  • Muscle cell

Questão 135

Questão
Contraction of cardiac muscle is initiated by the [blank_start]SA node[blank_end].
Responda
  • SA node
  • AV node
  • Bundle of His
  • Purkinje fibers

Questão 136

Questão
Action Potentials: The resting membrane potential of cardiac muscle is [blank_start]-85 to -95[blank_end]. The action potential of cardiac muscle is [blank_start]105[blank_end] millivolts. The plateau lasts [blank_start]0.2 to 0.3[blank_end] seconds in ventricular muscle -- much longer than skeletal muscle.
Responda
  • -85 to -95
  • -100 to -120
  • -60 to -70
  • 105
  • 120
  • 95
  • 0.2 to 0.3
  • 0.3 to 0.4
  • 0.5 to 0.7

Questão 137

Questão
Which of the following is responsible for the influx of intracellular calcium in cardiac muscle?
Responda
  • Intracellular sarcoplasmic reticulum
  • Activation of the dihydropridene (DHP) channels
  • Activation of the ligand-gated channels
  • Passive sodium flow

Questão 138

Questão
In cardiac muscle, after the outflow of K+ ions during an action potential (AP), the permeability to K+ ions [blank_start]decreases[blank_end] tremendously. This prevents the early return of the AP voltage to its resting level.
Responda
  • decreases
  • increases

Questão 139

Questão
Action potentials of the cardiac cell is much [blank_start]longer[blank_end] than the AP of the nerve cell.
Responda
  • longer
  • shorter

Questão 140

Questão
Label the portions of the ventricular muscle action potential:
Responda
  • Fast Na channels open, then slow Ca chan
  • K channels open
  • Ca channels open more
  • K channels open more
  • Resting membrane potential

Questão 141

Questão
Put the steps of rapid depolarization of a cardiac cell in order: [blank_start]Rapid change membrane pot. from + to -[blank_end] [blank_start]Voltage pauses above 0 mV level[blank_end] [blank_start]Membrane potential inc. to Na[blank_end] and [blank_start]dec to K[blank_end] [blank_start]Begins absolute refractory period[blank_end] [blank_start]Cardiac muscle can't be excited again.[blank_end]
Responda
  • Rapid change membrane pot. from + to -
  • Voltage pauses above 0 mV level
  • Membrane potential inc. to Na
  • dec to K
  • Begins absolute refractory period
  • Cardiac muscle can't be excited again.

Questão 142

Questão
Put the steps of initial re-polarization in order for cardiac muscle: 1. [blank_start]Movement of Na into cells STOPS[blank_end] 2. [blank_start]Sodium gates close[blank_end] 3. [blank_start]C enters cell.[blank_end] 4. [blank_start]K leaves cell.[blank_end] 5. [blank_start]When Na stops, voltage begins to decline[blank_end]. 6. [blank_start]SLOW influx of Ca begins via slow Ca[blank_end] channels.
Responda
  • Movement of Na into cells STOPS
  • Sodium gates close
  • C enters cell.
  • K leaves cell.
  • When Na stops, voltage begins to decline
  • SLOW influx of Ca begins via slow Ca

Questão 143

Questão
SA node action potential has [blank_start]fewer[blank_end] phases than other cardiac muscle types.
Responda
  • fewer
  • more
  • the same amount

Questão 144

Questão
Place in order the phases of the SA node. Phase 0: [blank_start]Na & Ca influx[blank_end] Phase 3: [blank_start]K efflux[blank_end] Phase 4: [blank_start]Progressively slowed K efflux[blank_end] & intrinsic [blank_start]Na influx leak causes spontaneous[blank_end] depolarization.
Responda
  • Na & Ca influx
  • K efflux
  • Progressively slowed K efflux
  • Na influx leak causes spontaneous

Questão 145

Questão
[blank_start]Refractory period:[blank_end] During this time, the cardiac muscle cannot be re-excited. [blank_start]Relative refractory period:[blank_end] Cell can be excited, but the signal must be very strong. Example is an early or "premature" contraction.
Responda
  • Refractory period:
  • Relative refractory period:

Questão 146

Questão
Cardiac T-tubules are five times [blank_start]larger[blank_end] than skeletal muscle T-tubules.
Responda
  • larger
  • smaller

Questão 147

Questão
Excess Ca causes [blank_start]spastic contraction[blank_end]. Low Ca causes [blank_start]cardiac dilation[blank_end].
Responda
  • spastic contraction
  • cardiac dilation

Questão 148

Questão
Atrioventricular (AV) valves allow blood flow in one direction FROM atria to ventricle. [blank_start]Tricuspid valve[blank_end]: Between RA & RV [blank_start]Mitral valve:[blank_end] Between LA & LV
Responda
  • Tricuspid valve
  • Mitral valve:

Questão 149

Questão
The semilunar valves are the outlet valves of the ventricles. They provide blood from each ventricle into large outflow tract vessel. [blank_start]Pulmonary valve[blank_end]: Between RV & Pulmonary artery [blank_start]Aortic valve[blank_end]: Between LV & aorta
Responda
  • Pulmonary valve
  • Aortic valve

Questão 150

Questão
Label the parts of the Atrial Pressure Wave:
Responda
  • Atrial Contraction
  • Ventricular contraction (AV valves bulge
  • flow of blood into the atria

Questão 151

Questão
Diastole -Isovolumic relaxation -A-V valves [blank_start]open[blank_end] -Rapid inflow of blood -Diastasis -Slow flow into ventricle -Atrial systole -Extra blood in following P wave. -Accounts for 20-25 % of filling
Responda
  • close
  • open

Questão 152

Questão
Systole 1. Isovolumic contraction 2. A-V valves [blank_start]close[blank_end] ventricular press>atrial press 3. Aortic valve opens 4. Ejection phase 5. Aortic valve closes
Responda
  • close
  • open

Questão 153

Questão
Aortic Pressure Curve 1. Aortic pressure starts to [blank_start]increase[blank_end] during systole after the aortic valve opens 2. Aortic pressure [blank_start]decreases[blank_end] toward the end of the ejection phase. 3. Aftertheaorticvalvecloses,an incisura occurs because of sudden cessation of back-flow toward left ventricle. 4. Aortic pressure [blank_start]decreases[blank_end] slowly during diastole because of the elasticity of the aorta.
Responda
  • decrease
  • increase
  • decreases
  • increases
  • decreases
  • increases

Questão 154

Questão
[blank_start]Ejection Fraction[blank_end] = (SV/EDV) x 100
Responda
  • Ejection Fraction

Questão 155

Questão
Compute the following to calculate ejection fraction: EDV = 150 End-Systolic Volume = 50
Responda
  • 55%
  • 60%
  • 67%
  • 70%

Questão 156

Questão
If heart rate is 70 and stroke volume is 70, what is the cardiac output?
Responda
  • 3.5 L/min
  • 4 L/min
  • 4.9 L/min
  • 6 L/min

Questão 157

Questão
The normal value for ejection fraction is [blank_start]60 to 70[blank_end] percent. An EF less than [blank_start]40[blank_end] percent is associated with significant left ventricular impairment.
Responda
  • 60 to 70
  • 50 to 60
  • 40 to 60
  • 40
  • 50
  • 30

Questão 158

Questão
Select the normal valve area for the Aortic valve.
Responda
  • 1.5 to 3.0
  • 2.5 to 4.5
  • 3 to 5
  • 4 to 6

Questão 159

Questão
What is the normal valve area for the mitral valve?
Responda
  • 2.5 to 4.5
  • 3 to 5
  • 1 to 3
  • 4 to 6

Questão 160

Questão
Mean Pressure Gradient (mmHg) 1. Aortic <[blank_start]5[blank_end] 2. Mitral <[blank_start]2[blank_end]
Responda
  • 5
  • 3
  • 2
  • 5
  • 3
  • 2

Questão 161

Questão
Because of smaller opening, velocity through aortic & pulmonary valves [blank_start]exceed[blank_end] that through the A-V valves.
Responda
  • exceed
  • are less than

Questão 162

Questão
Label the ventricular pressure/volume loops.
Responda
  • Mitral Valve (MV) Closes
  • Aortic Valve (AV) Opens
  • Aortic Valve Closes
  • Mitral Valve Opens
  • Stroke Volume (70mL)
  • End Systolic Volume (50mL)
  • End diastolic volume (120 mL)
  • Afterload
  • Preload

Questão 163

Questão
Know these key points from Ray's powerpoint.
Responda
  • Systole begins, diastole ends
  • Systole ends, Diastole begins

Questão 164

Questão
Increased contractility [blank_start]increases[blank_end] stroke volume.
Responda
  • decreases
  • increases

Questão 165

Questão
Increased preload [blank_start]increases[blank_end] stroke volume.
Responda
  • decreases
  • increases

Questão 166

Questão
Increased afterload [blank_start]decreases[blank_end] stroke volume.
Responda
  • decreases
  • increases

Questão 167

Questão
Increasing the arterial pressure in the aorta does not decrease the CO until the MAP rises above what?
Responda
  • 80
  • 100
  • 120
  • 160

Questão 168

Questão
Frank-Starling Law Intrinsic ability of the heart to adapt to increasing volumes of inflowing blood Greater the heart muscle is stretched during filling, the [blank_start]greater[blank_end] force of contraction, the greater amt of blood pumped to aorta
Responda
  • greater
  • lesser

Questão 169

Questão
The Frank-Starling Relationship says that [blank_start]Increased[blank_end] ventricular filling [blank_start]Increased[blank_end] Preload [blank_start]Increased[blank_end] LVEDP [blank_start]Increased[blank_end] Stroke Volume
Responda
  • Decreased
  • Increased
  • Decreased
  • Increased
  • Decreased
  • Increased
  • Decreased
  • Increased

Questão 170

Questão
What are the ways to increase cardiac output? [blank_start]Increase[blank_end] contractility [blank_start]Increase[blank_end] preload [blank_start]Decrease[blank_end] after load Change the rate
Responda
  • Decrease
  • Increase
  • Decrease
  • Increase
  • Decrease
  • Increase

Semelhante

Medidas e Medições
Alessandra S.
ESTRUTURA DAS PALAVRAS - Morfologia
Viviana Veloso
Língua Portuguesa - Vocabulário
nando.mrossi
Gramática para o First Certificate II
GoConqr suporte .
II GUERRA MUNDIAL
Luis Augusto Oliveira
conceitos em saúde e segurança do trabalho
nice martins
Direito Processual Civil
Joelma Silva
Resumo global da matéria de Biologia e Geologia (10.º e 11.º anos)_2
Sofia Oliveira
O Segredo para uma Memória Ativa
Alice Sousa
A APRENDIZAGEM PROFISSIONAL EM UMA EMPRESA DE COMUNICAÇÃO: UM ESTUDO À LUZ DA APRENDIZAGEM INFORMAL
eduarda Fernandes
FCE Masterclass - U1 seeing verbs
Rosana Cabral