Sistema de Ecuaciones Metodo de Suma y Resta

Descrição

Primero Algebra Slides sobre Sistema de Ecuaciones Metodo de Suma y Resta, criado por EQUIPO 8 em 25-05-2018.
EQUIPO 8
Slides por EQUIPO 8, atualizado more than 1 year ago
EQUIPO 8
Criado por EQUIPO 8 quase 7 anos atrás
2
0

Resumo de Recurso

Slide 1

    Metodo de Suma y Resta
    Hoy vamos explicar como resolver un sistema de ecuaciones con el metodo de suma y resta.  Se tiene dos sitemas de ecuaciones como el siguiente: 3x + 4y =25 6x - y = 10 Como primer paso lo que tenemos que hacer es buscar algun numero que multiplicado por alguna ecuacion se pueda eliminar una de las incognitas en este caso "x" o "y".    Asi que si nos damos cuenta en la ecuacion de abajo si la multiplicamos por 4 podemos eliminar las "y". 3x + 4y = 25 (4) 6x - y = 10

Slide 2

    Multiplicando nos queda esto:   3x + 4y = 25 24x - 4y = 10 Para eliminar 4y tenemos que restar asi que eso aplica para todo el sistema de ecuaciones entonces nos queda asi: 3x + 4y = 25 24x- 4y =10 -21x=15 Solo nos queda despejar  x=15     -21 Esto esigual a -0.71 y ese es el valor de "x"      

Slide 3

    Ahora tomamos cualquiera de las dos ecuaciones y sustituimos en ellas 0.71 que es el valor que encontramos de "x".  En este caso tomaremos la primera. 3x + 4y = 25 3(-0.71) + 4y = 25  -2.13 + 4y = 25 Despues de haber hecho las operaciones correspondientes solo nos queda despejar "y"  4y = 25 + 2.13 4y = 27.13 y = 27.13       4 Haciendo la divison nos queda que "y" es igual a 6.78        

Slide 4

    Para saber si nuestros resultados son correctos solo sustituimos los dos valores que encontramos en las ecuaciones en ambas tine que funcionar. Valores encontrados  x = -0.71               Primera ecuacion:         3x + 4y = 25 y = 6.78                  Sustituimos:                 3(-0.71) + 4(6.78)                                                                     -2.13 + 27.12 = 24.99 Sale esto porque no utlizamos todas las decimales pero el resultado es correcto ahora vamos a la otra ecuacion.                            Segunda ecuacion:          6x - y = 10                            Sustituimos                     6(-0.71) - (6.78)                                                                     -4.26 - 6.78 = 10.26 

Slide 5

Semelhante

Factorización de Expresiones Algebráicas
maya velasquez
Factorización de expresiones algebraicas_1
Juan Beltran
Factorización de expresiones algebraicas_2
Juan Beltran
Introducción al Álgebra
Tulio Herrera
ESTRUCTURAS ALGEBRAICAS
David Hdez
ÁLGEBRA EXAMEN EN LÍNEA
Admin telefonistas
CRIPTOGRAFÍA CON MATRICES (cifrado de Hill)
Yajhana Villa
Solucion de limites por medio de L'Hopital
OMAR GARCIA PEREZ
Àlgebra
Lidia F
FACTORIZACION DE POLINOMIOS
Faber Garcia
Matemáticas- Álgebra
dayana burguez