Finite Element Method for problems in Physics

Descrição

My personal Summary from the Coursera Course.
Deiwid decker
Slides por Deiwid decker, atualizado more than 1 year ago
Deiwid decker
Criado por Deiwid decker quase 6 anos atrás
192
0

Resumo de Recurso

Slide 1

    Linear Elliptic Differential equations in 1D
    1D Heat Conduction at steady state 1D Mass Diffusion at steady state 1D Elasticity at steady state.
    Rubrica: : 1D Heat Conduction

Slide 2

    ug = Specified displacement at x = L. t = Specified traction at x = L. f = Distributed body force.   Find  \(u(x) : (0,L) ---> R\) given \(u(0)= u_0,u_g,t\) the constitutive relation \(\sigma = E u_,x\) such that \[\frac{d\sigma}{dx}+f=0\]. with the boundary conditions /( Diff Eq \) , \(u(0)=u_0 \), and either \(u(L)=u_g\) or \(\sigma(L) = t \)

Slide 3

    Boundary Conditions
    \(u(0)=U_0 \), \(u(L) = u_g \)  - Dirichlet Boundary Conditions - On the primal field  \(\sigma(L) = t\) - Neumann Boundary Conditions - On the derivative of the primal field. For Elasticity : Dirichlet - Displacement                           Neumann - traction   *( We do not consider neumann at o and L. This would assume that we have a dynamic conditions such as a bar flying.)   ( We do not have just one answer for this type of problem. (Proof on mooc or notebook.)) Neumann B.C alone can be specified for the time dependent elasticity problem \(HyperbolicPartialDifferentialEquation\)

Slide 4

    The differential Equation
    \[ \frac{d\sigma}{dx} +f(x) = 0 \] \((0,L) \) open interval excluding 0 and L because we have boundary conditions on them. 

Slide 5

    Constitutive Relation
    \[ \sigma = Eu,_x \] Tell about the constitution of the domain  \(\sigma\) = Stress \( E\) = Young Modulus \(u,_x \) = strain -Linearized Elasticity    

Semelhante

Teoría Básica de contactos Elementos Finitos FEM
Juang G Diosa
FEA-Mindmap Mooc
Deiwid decker
Simulado de história
Alessandra S.
HISTÓRIA REVOLUÇÃO FRANCESA
neusamiotto
Função do 2º grau
GoConqr suporte .
Guia Completo - Como usar GoConqr
GoConqr suporte .
Filosofia
Kamila Vieira
Contextualização da Aula 1 - Tecnologia na Formação Profissional - SAÚDE
Fabrícia Assunção
Art. 5º da CF/88
Luís Felipe Mesiano
Quiz -sólidos geométricos
INES FIGUEIRA