Principles of flight. Part 2

Description

Quiz on Principles of flight. Part 2, created by Roman Eidia on 26/10/2018.
Roman Eidia
Quiz by Roman Eidia, updated more than 1 year ago
Roman Eidia
Created by Roman Eidia about 6 years ago
65
1

Resource summary

Question 1

Question
In which conditions, the density altitude is equal to the standard altitude accordirng to ISA ?
Answer
  • In The conditions which are equal with the table ISA.
  • In tropical conditions.
  • In the Arctic conditions.
  • When the standard height equals the height of the airport elevation.

Question 2

Question
In what proportion to the air density are depends aerodynamic forces on the aerofoil?
Answer
  • Proportionately
  • Inversely.
  • In proportion to the square of the density.
  • They are independent upon the air density.

Question 3

Question
W której grupie znajduje się urządzenie, które nie służy do zmniejszania sił, jakie pilot musi wywierać na drążek sterowy? In Which group that is device, which doesn't serve to reduce of the forces that the pilot to must execute on the control column?
Answer
  • Wyważenie masowe; - klapka wyważająca. Anti balance/ trim tab - Flettner.
  • Fletner; - trymer.Trim tab - Mass balance.
  • Wyważenie aerodynamiczne; - wyważenie sprężynowe. Aerodynamic balance- balance spring.
  • Wzmacniacz hydrauliczny; - klapka odciążająca. Hydraulic amplifier-Anti balance tab.

Question 4

Question
In normal flying conditions the controls forces are:
Answer
  • Always proportionally suitable to traffic changes or state of flight.
  • Always proportional suitable to the altitude and flight speed.
  • Independent from the flight speed.
  • Independent upon induced changes in movement or changes in flight.

Question 5

Question
In The profiles of normal, arcuate line-shaped frame, with an increase in angle of attack aerodynamic resultant force:
Answer
  • Moves forward along the chord.
  • Moves back along the chord.
  • For alpha<0 moves forward along the chord, and for alpha>0 moves along the chord to the rear.
  • Does not move along the chord.

Question 6

Question
In static profiles, with increased angle of attack aerodynamic resultant force:
Answer
  • Moves back along the chord.
  • For alpha<0 moves forward along the chord, and for alpha>0 moves along the chord to the rear.
  • Does not move along the chord.
  • Moves forward along the chord.

Question 7

Question
In the symmetric profiles for the angle of attack alpha = 0 °:
Answer
  • The geometric chord of the profile chord coincides with an aerodynamic profile.
  • The geometric chord of the profile does not match the profile aerodynamic chord.
  • Geometric chord of the profile coincides with the aerodynamic mean chord other Profile
  • Geometric chord of the profile does not coincide with the aerodynamic mean chord of the profile.

Question 8

Question
In the profiles of symmetric, with an increase in angle of attack aerodynamic resultant force:
Answer
  • Does not move along the chord.
  • Moves forward along the chord.
  • Moves back along the chord.
  • For alpha<0 moves forward along the chord, and for alpha> 0 moves along the chord to the rear.

Question 9

Question
W rozwiązaniu konwencjonalnym usterzenie pionowe składa się z: In the conventional solution, vertical tail Ionsists of:
Answer
  • Statecznika pionowego stanowiącego przednią, nieruchomą część-steru kierunku stanowiącego tylną ruchomą część. Vertical stabilizer being the front immovable part of a direction rudder which is the rear movable part.
  • Statecznika pionowego stanowiącego przednią, nieruchomą część-steru wysokości stanowiącego tylną ruchomą część. Vertical stabilizer beint the from immovable part of a height rudder - being the back movable part.
  • Statecznika pionowego stanowiącego tylną, nieruchomą część-steru kierunku stanowiącego przednią ruchomą część. Vertical stbilizer as rear immovable part of the directional rudder being the front movable part.
  • Statecznika pionowego stanowiącego przednią, ruchomą część-steru kierunku stanowiącego tylną nieruchomą część. Vertical stabilizer as front movable part of the directional rudder being rear immovable part.

Question 10

Question
W rozwiązaniu konwencjonalnym usterzenie wysokości składa się z: In the conventional solution the height tail consists of:
Answer
  • Statecznika poziomego stanowiącego przednią, nieruchomą część-steru wysokości stanowiącego tylną ruchomą część. Tail-plane horizontal stabilizer as the front immovable part of the height rudder being the front movable part.
  • Statecznika pionowego stanowiącego przednią, nieruchomą część-steru wysokości stanowiącego tylną ruchomą część. Vertical stabilizer as front immovable part of the directional rudder being the rear movable part.
  • Statecznika poziomego stanowiącego tylną, nieruchomą część-steru wysokości stanowiącego przednią ruchomą część. Horizontal stabilizer as rear immovable part of the directional rudder being the front movable part.
  • Statecznika poziomego stanowiącego przednią, ruchomą część-steru wysokości stanowiącego tylną nieruchomą część. Horizontal stabilizer being the front movable part of the height rudder as the rear immovable part.

Question 11

Question
The coordinate system describing the movement of the aircraft during flight axis OX? Is called:
Answer
  • Longitudinal axis.
  • Lateral axis.
  • The vertical axis.
  • Horizontal axis.

Question 12

Question
The coordinate system describing the movement of the aircraft during flight axis OY? Is called:
Answer
  • Lateral axis.
  • The vertical axis.
  • Horizontal axis.
  • Longitudinal axis.

Question 13

Question
The coordinate system describing the movement of the aircraft during flight axis OZ? Is called:
Answer
  • The vertical axis.
  • Horizontal axis.
  • Longitudinal axis.
  • Lateral axis.

Question 14

Question
In the flight, the pilot set tilts a joystick to the right. Assuming that the aileron deflects by the same angle, following statement will be true:
Answer
  • Drag force on an airleron going-down will be greater than the drag force on the second one.
  • Drag force on an airleron going-down will be lower than the drag force on the second one.
  • Drag forces on both ailerons will increase by the same value.
  • The drag force on both ailerons will decrease by the same value.

Question 15

Question
In a result of aileron going up and down by the same angle will be:
Answer
  • Unfavorable ailerons drag moment.
  • Positive ailerons drag moment.
  • Unfavorable roll moment.
  • Positive yaw moment.

Question 16

Question
Using of winglets on tips of wings decrease drag:
Answer
  • Induced.
  • Interference.
  • Shape.
  • Slot.

Question 17

Question
A boundary layer of an aerofoil is a layer in which:
Answer
  • The speed of air molecules is less than the velocity of airflow.
  • There is a transition of turbulent to the laminar airflow.
  • An airflow has a laminar characteristic.
  • An airflow has a turbulent characteristic.

Question 18

Question
The value of the coefficient of lift (CL) for the critical angle of attack "AOA" has the maximum value.
Answer
  • It is always true.
  • It is always false.
  • It is true only for symmetric profiles.
  • It is false only for symmetric profiles.

Question 19

Question
The value of the coefficient of drag (Cd) for the critical angle of attack "AOA" has the maximum value.
Answer
  • It is always false.
  • It is always true.
  • It is true only for symmetric profiles.
  • It is false only for symmetric profiles.

Question 20

Question
Wewnętrzna kompensacja aerodynamiczna steru odbywa się poprzez zastosowanie: The internal aerodynamic balance of aileron is executed by:
Answer
  • Przepony, która jednocześnie zmniejsza opór szczelinowy. Hinged balance panel, which also reduces drag of slots.
  • Dodatkowej powierzchni sterowej przed osią obrotu steru. Additional steering surface before pivot of control.
  • Klapki dociążającej. Anti balance tab.
  • Klapki odciążającej. Flettner tab.

Question 21

Question
With increase of altitude an air density:
Answer
  • Always decreases.
  • Always grows.
  • Does not change.
  • Decreases- if the temperature decreases and increases- if the temperature rises.

Question 22

Question
The Load factor 'n ' during dive is:
Answer
  • n=0 .
  • n<0.
  • n>0.
  • n=1.

Question 23

Question
The load factor during turn depends from:
Answer
  • Bank Angle and airspeed.
  • An airspeed.
  • The volume of drag.
  • Induced drag.

Question 24

Question
Moving of whose devices are not mechanically coupled with moving control surface?
Answer
  • Trimmer tab.
  • Flettner.
  • Anti balance tab.
  • Ballance tab.

Question 25

Question
Wykres zależności Cx = f(alpha;) dla profilu symetrycznego jest: A graph of function of the coeficient of drag Cd = f (AOA) for asymmetric profile is:
Answer
  • Symetryczny względem osi "Cx". Symmetrical to the axis of "Cd".
  • Symetryczny względem osi alpha. Symmetrical to the axis "AOA".
  • Symetryczny względem środka układu współrzędnych.Symmetrical to the center of the coordinate system.
  • Nie posiada żadnej symetrii. It has no symmetry.

Question 26

Question
Wykres zależności Cz = f(Cx) dla profilu symetrycznego jest: A graph of the function Cl = f (Cd) for the symmetric profile is:
Answer
  • Symetryczny względem osi "Cx". Symmetrical to the axis of "Cx".
  • Symetryczny względem osi "Cz". Symmetrical to the axis of "Cl".
  • Symetryczny względem środka układu współrzędnych. Symmetrical towards the center of the coordinate system.
  • Nie posiada żadnej symetrii. It has no symmetry.

Question 27

Question
Wykres zależności Cz = f(Cx) wykonany na podstawie pomiarów w czasie lotu nazywamy: A graph of the function Cl = f (Cd) made up on of the basic measurements during a flight, is called:
Answer
  • Biegunową szybowca. A polar curve.
  • Biegunową prędkości szybowca. A polar of glider speed.
  • Biegunową profilu. A polar of profile.
  • Biegunową skrzydła. A polar of wing.

Question 28

Question
Wykres zależności Cz = f(alpha;) dla profilu symetrycznego jest: A graph of the function Cl = f (AOA) for a symmetric profile is:
Answer
  • Symetryczny względem środka układu współrzędnych. Symmetrical to the center of the coordinate system.
  • Symetryczny względem osi "alpha". Symmetrical to the 'AOA' axis.
  • Symetryczny względem osi "Cz". Symmetrical to the Cl axis.
  • Nie posiada żadnej symetrii. It has no symmetry.

Question 29

Question
Wykresy jakich zależności dla profilu symetrycznego przechodzą przez środek układu współrzędnych? Graphs of which functions for the symetric profile are intersecting the center of the coordinate system?
Answer
  • Cz = f(alpha), Cm = f(alpha). Cl = f (AOA), Cm = f (AOA).
  • Cz = f(alpha), Cx = f(alpha). Cl = f (AOA), Cd = f (AOA).
  • Cx = f(alpha), Cm = f(alpha). Cd = f (AOA), Cm = f (AOA).
  • Cz = f(alpha), Cz = f(Cx). Cl = f (AOA), Cl = f (Cd).

Question 30

Question
Wykresy jakich zależności dla profilu symetrycznego są osiowosymetryczne? Graphs of which functions for the symetric profile are intersect center of coordinate system?
Answer
  • Cx = f(alpha), Cz = f(Cx). Cl = f(AOA), Cl = f(Cd).
  • Tylko Cx = f(alpha). Only Cd = f(AOA).
  • Cz = f(alpha), Cx = f(alpha). Cl = f(AOA), Cd = f(AOA).
  • Tylko Cz = f(Cx). Only Cl = f(Cl).

Question 31

Question
Dihedral of the wings is used to:
Answer
  • Increase of the lateral stability of the glider.
  • Increase the max=L/D of a glider.
  • Improve of lateral maneuverability of a glider.
  • Reduce of the induced drag of a glider.

Question 32

Question
The increase in air temperature at a constant altitude causes:
Answer
  • Reduction in air density.
  • Increase in air density.
  • Does not change the density and relative humidity.
  • Increase in relative humidity.

Question 33

Question
Z jakich głównych elementów powstaje opór statku powietrznego zwany „szkodliwym”? What are the main elements of the resistance aircraft called skin friction dran?
Answer
  • Z „oporu kształtu” bryły statku powietrznego i z „oporu tarcia” powietrza o powierzchnię tej bryły. The "resistance form" body of the aircraft and the "frictional resistance of air on the surface of this body.
  • Z lepkości powietrza i z oporów wirów powstających na bryle statku. The viscosity of the air and eddies of emerging resistance to block the vessel.
  • Z „oporu kształtu” bryły statku powietrznego i z „oporu indukowanego” powstającego na powierzchni bryły statku. The "resistance form" solid aircraft, and "induced drag" formed on the surface of a solid board.
  • Z „oporu tarcia” powietrza o powierzchnię bryły statku powietrznego i z „oporu interferencyjnego”. "Frictional resistance of air on the solid surface of the aircraft and the" resistance interference ".

Question 34

Question
The principle of continuity of the movement of air flowing through the tunnel with variable cross-section states that:
Answer
  • If the cross-section of the tunnel grow twice, the air speed decreases twice.
  • If the cross-section of the tunnel grow twice, the air velocity increases twice.
  • If the cross-section of the tunnel grow twice, the air velocity decreases fourfold.
  • If the cross-section of the tunnel grow twice, the air velocity increases fourfold.

Question 35

Question
Apply of aerodynamic balance of controls is designed to:
Answer
  • Reduce the hinge moment.
  • Increase the hinge moment.
  • Balance of control surface in neutral position.
  • Mass balance of control surface.

Question 36

Question
Zdolność do zachowania stanu równowagi i przeciwdziałania jego zmianom nazywamy: The ability to maintain the balance and prevent its changes is called:
Answer
  • Statecznością statyczną. The static stability.
  • Statecznością dynamiczną. The dynamic stability.
  • Stabilnością statyczną. The static stability.
  • sterownością dynamiczną dynamic steering.

Question 37

Question
Ability to change the steady-state flight under the influence of corresponding rudder deflection is called:
Answer
  • Steering
  • The static stability.
  • The dynamic stability.
  • The stability.

Question 38

Question
Zewnętrzna kompensacja aerodynamiczna steru odbywa się poprzez zastosowanie: The external aerodynamic compensation of control surface takes place by the application of:
Answer
  • Dodatkowej powierzchni sterowej przed osią obrotu steru. An additional control surface before of the control hinge line.
  • Klapki dociążającej. The anti balance tab.
  • Klapki odciążającej.The balance tab.
  • Flettnera. The flettner.

Question 39

Question
The phenomenon of aileron reversal that is:
Answer
  • A twisting the wing due to aileron deflection.
  • The formation of initial vibration.
  • A buffeting formation.
  • A coupling of the ailerons.

Question 40

Question
Reducing of airstream cross- section means:
Answer
  • A drop of static pressure in the stream and speed increase.
  • Increase of static pressure in the stream and speed drop.
  • Stagnation of stream velocity.
  • Increase in streamline of the pressure stream.

Question 41

Question
Zwichrzenie aerodynamiczne skrzydła charakteryzuje się tym, że: An aerodynamic twist of wing is characterized itself by:
Answer
  • Zwichrzenie aerodynamiczne skrzydła charakteryzuje się tym, że: Appliance on tips of the wings aerodynamic profiles for which detach of air flow for Stall angle of attack is less intense.
  • Cięciwy profilów geometrycznych w kolejnych przekrojach nie leżą w jednej płaszczyźnie. The chords of next air profiles are not in the same plain.
  • Skrzydła wygięte są w dół podczas postoju szybowca na ziemi. The wings are deflect donward when glider is on the ground.
  • Skrzydła wygięte są w górę podczas lotu. The wings are deflected upward in the flight.

Question 42

Question
Zwichrzenie geometryczne skrzydła charakteryzuje się tym, że: The geometrical twist of wings is characterized itself by:
Answer
  • Cięciwy profili geometrycznych w kolejnych przekrojach nie leżą w jednej płaszczyźnie. profiling geometric chord in subsequent sections do not lie in one line
  • skrzydła wygięte są w dół podczas postoju szybowca na ziemi the wings are bent down when parked glider on the ground
  • skrzydła wygięte są w górę podczas lotu wings are bent upwards in the flight
  • na końcówkach skrzydeł stosuje się profile, na których oderwanie strug dla &alpha;kryt jest mniej intensywne on the wingtip sections profile are applied where the plane separation is less intense

Question 43

Question
Increasing the lift on the wing causes a change in the induced drag:
Answer
  • Greater.
  • Less.
  • It has no effect on induced drag.
  • Smaller or greater depending from the speed of flight.

Question 44

Question
Zwiększanie kąta natarcia alpha>alpha kr. powoduje: Increasing the angle of attack alpha > alpha cr causes:
Answer
  • Zwiększanie "Cx" oraz zmniejszanie "Cz" . Increasing the "Cx" and reducing the "Cz".
  • Zwiększanie "Cz" oraz zmniejszanie "Cx".Increasing the "Cz", and reducing the "Cx".
  • Zwiększanie "Cx" oraz "Cz". Increasing the "Cx" and "Cz".
  • Zmniejszanie "Cx" oraz "Cz". Reducing the "Cx" and "Cz".

Question 45

Question
What kind of rule is? "In the tunnel by which an air flows a product of cross-sectional area and an air velocity is constant S * v = const"
Answer
  • The Equation of Continuity.
  • The Bernoulli's principle.
  • The Bernoulli Principles.
  • The moment of momentum principle.

Question 46

Question
Co to za zasada?: „W tunelu, przez który przepływa powietrze, suma ciśnienia statycznego i dynamicznego jest stała w każdym punkcie tego przepływu” What kind of rule is? "In the tunnel by which an air flows, the sum of static and dynamic pressure is constant at every point of the movement"
Answer
  • prawo Bernouli’ego the Bernouli right B
  • zasada ciągłości ruchu the principle of movement continuity
  • zasada zachowania energii przepływu the principle of conservation of energy flow
  • zasada zachowania ciśnienia przepływu zamkniętego the principle of conservation of closedflow pressure

Question 47

Question
Dla opisania ruchów statku powietrznego (samolotu, śmigłowca, szybowca etc) w przestrzeni stosowany jest układ osi współrzędnych x-y-z. Jakie oznaczenie nosi oś pionowa? To describe the movements of aircraft (airplane, helicopter, glider, etc.) in the space system is used three axes. How the vertical axis is marked?
Answer
  • z. Normal axis.
  • X. Longitudal axis.
  • Y. Lateral axis.
  • Dowolne. On discretion.

Question 48

Question
Dla opisania ruchów statku powietrznego (samolotu, śmigłowca, szybowca etc) w przestrzeni stosowany jest układ osi współrzędnych x-y-z. Jakie oznaczenie nosi oś podłużna? To describe the movements of aircraft (airplane, helicopter, glider, etc.) in the space system iaxes xyz is used. How the longitudinal axis is marked?
Answer
  • X. Longitudal axis.
  • Y. Lateral axis.
  • Z. Normal axis.
  • There is no marking.

Question 49

Question
To describe the movements of aircraft (airplane, helicopter, glider, etc.) in the space system axes xyz is used. How is the transverse axis marked?
Answer
  • Y. Lateral axis.
  • X. Longitudal axis.
  • Z. Normal axis.
  • On discretion.

Question 50

Question
When air flows through the channel of variable cross-sectional area the static pressure changes. How?
Answer
  • Decreases with decreasing cross-sectional area.
  • Decreases with increasing cross-sectional area.
  • Does not change at all.
  • Increases with reducing cross-sectional area.

Question 51

Question
How does an object behave (aircraft, helicopter, glider, hang-gliding, etc.) dynamically unstable after it has been balanced off?
Answer
  • The object moves, mostly harmonic, with increasing amplitude.
  • The object moves, the most often harmonic with damped oscilaion.
  • It remains the position after being balanced off.
  • It takes the position more distant from the balance position.

Question 52

Question
How does the object behave (aircraft, helicopter, glider, hang-gliding, etc.) dynamically stable being balanced off?
Answer
  • The object moves, most often harmonic, with damped oscilation.
  • It maintains the position wich it has reached after being balanced off.
  • Performing movement, most often harmonic, with divergent oscilation.
  • Immediately after the termination of the pulse precipitation returns to the balanced position.

Question 53

Question
How does the harmful drag behaved when increasing air speed?
Answer
  • Increases with the square of speed.
  • Remains constant.
  • Decreases proporconalnie to the inverse of speed.
  • Swinging.

Question 54

Question
How does the harmful drag behaved when increasing air speed?
Answer
  • The resistance increases with the square of speed.
  • The resistance remains constant.
  • The resistance decreases proportionally to the inverse of speed.
  • The resistance varies.

Question 55

Question
How will change the centrifugal force with the same speed of flight in the turn if the radious will be decrease itself?
Answer
  • Will increase.
  • Will decrease.
  • Remain unchanged.
  • Will decrease to zero.

Question 56

Question
How will change the centrifugal force with the same speed of flight in the turn if the radious will be decrease itself?
Answer
  • The centrifugal force increases.
  • The centrifugal force will decrease.
  • The centrifugal force will remain unchanged.
  • The centrifugal force will decrease to zero.

Question 57

Question
The angle of climb "gamma" on a constant angle of attack "alpha" during growth of altitude:
Answer
  • Remains unchange.
  • Increases.
  • Decreases.
  • Changes and it can be readed by drawing of the glider polar.

Question 58

Question
Lot odbywa się na kącie natarcia, dla którego współczynnik siły oporu Cx ma wartość minimalną: alpha=alpha(Cxmin). W wyniku niewielkiego zwiększenia kąta natarcia: Flight takes place on the angle of attack, for which the drag coefficient Cd has the minimum of value: alpha=alpha(Cdmin). In a result of a small increase of angle of attack:
Answer
  • Stosunek Cz/Cx wzrośnie. Maximum ratio Cl/Cd will increase.
  • Stosunek Cz/Cx zmaleje. Maximum ratio Cl/Cd will decrease.
  • Stosunek Cz/Cx nie zmieni się. Maximum ratio Cl/Cd will not change.
  • Doskonałość płatowca nie zmieni się. Maximum ratio Cl/Cd of the airframe will decreases.

Question 59

Question
Lot odbywa się na kącie natarcia, dla którego współczynnik siły oporu Cx ma wartość minimalną: alpha=alpha(Cxmin). W wyniku niewielkiego zwiększenia kąta natarcia: Flight takes place on the angle of attack, for which the drag coefficient Cd has the minimum of value: alpha=alpha(Cdmin). In a result of a small increase of angle of attack:
Answer
  • Doskonałość płatowca wzrośnie. Maximum ratio of airframe Cl/Cd will increase.
  • Doskonałość płatowca zmaleje. Maximum ratio of airframe Cl/Cd will decrease.
  • Doskonałość płatowca nie zmieni się. Maximum ratio of airframe Cl/Cd will not change.
  • Stosunek Cz/Cx zmaleje. Maximum ratio Cl/Cd will decrease.

Question 60

Question
Main type of spin is influenced by the following factors:
Answer
  • Glider's center of gravity, the glider mass-distribution, location and size of the empennage.
  • Glider's center of gravity, the glider mass-distribution, setting of trim tabs.
  • Distribution of the glider masses - setting of the trim tabs, location and size of the empennage.
  • Setting of the trim tabs, glider's center of gravity, location and size of the empennage.

Question 61

Question
To recover of the plane from of skidding during the turn and make the correct turn to do perform:
Answer
  • To increase angle of bank or use rudder to increase of turn radious.
  • To reduce angle of bank or decrease of turn angle radious.
  • Increase angle of bank or to increase the angular velocity of the turn.
  • Reduce the bank or increase the angular velocity of the turn.

Question 62

Question
Aby wyprowadzić samolot z ześlizgu w zakręcie i wykonać zakręt prawidłowy należy: To recover of the plane from of the slliping during the turn and make the correct turn to do perform:
Answer
  • Zmniejszyć przechylenie lub zwiększyć prędkość kątową zakrętu. To reduce the angle of bank or use rudder to decrease of turn radious.
  • Zwiększyć przechylenie lub zwiększyć prędkość kątową zakrętu. Increase the pitch of turn.
  • Zmniejszyć przechylenie lub zmniejszyć prędkość kątową zakrętu. Increase the pitch of turn.
  • Zwiększyć przechylenie lub zmniejszyć prędkość kątową zakrętu. Increase angular roll or increase the bank.

Question 63

Question
What is that rule? "In the tunnel through which air flows and cross-product of the air velocity is constant S * v = const
Answer
  • The Equation of Continuity.
  • Bernouli principle.
  • The Bernoulli's law.
  • The principle of conservation of momentum.

Question 64

Question
What kind is that rule? In the tunnel by which air flows, the product of static and dynamic pressure is constant in each point of airflow.
Answer
  • The Bernoulli's principle.
  • The Equation of contuity principle.
  • The principle of conservation of energy flow.
  • The principle of conservation of closed-flow pressure

Question 65

Question
Does is between the steering and stability of a flying object (plane, helicopter, glider etc.) some relation to each other?
Answer
  • They operate against to each other.
  • They coopoperate.
  • There is no relationship between them.
  • Stability supported a longitudinal steering.

Question 66

Question
Does a proppeler efficiency (eta)"h" for the fixed propeller can take the value zero? If yes, in what circumstances?
Answer
  • The propeller has RPM and the airplane has a speed TAS = 0 or TAS is so large that it don't gives any Thrust.
  • Only when the propeller has RPM and the airplane has a TAS = 0.
  • Only when TAS is so large that Thrust is 0.
  • (ETA) "h" can not take a zero value.

Question 67

Question
When an air flows by the stream tube with variable changed cross-sectional area the static pressure changes itself. How?
Answer
  • Decreases with the reduction of the crosssectional area.
  • Decreases with increasing cross-sectional area.
  • Does not change at all.
  • Increases with the reduction of cross-sectional area.

Question 68

Question
How does the object behave (aircraft, helicopter, hang-gliding, etc.) dynamically unstable after being balanced off?
Answer
  • The object moves, mostly harmonic, with increasing amplitude.
  • The object moves, mostly harmonic, with decreasing amplitude.
  • It remains the position after being balnced off .
  • It takes the position more and more distant from the balanced position.

Question 69

Question
How does the object behave (aircraft, helicopter, hang-gliding, etc.) dynamically stable after being balanced off?
Answer
  • The object moves, most often harmonic, with decreasing amplitude.
  • It maintains the position it reached after being balanced off .
  • Performs the movement, mostly harmonic, with increasing amplitude.
  • Immediately after the termination of the pulse precipitation returns to the balanced position.

Question 70

Question
How does harmful resistance behave with increased flight speed?
Answer
  • Increases with the square of speed.
  • Remains constant.
  • Decreases in proportion to the inverse of speed.
  • Swing.

Question 71

Question
How does is harmful resistance behave with increased flight speed?
Answer
  • The drag increases with the square of speed.
  • The drag remains constant.
  • The drag decreases proportionally to the inverse of speed.
  • The drag swing.

Question 72

Question
How will the centrifugal force change during turn with the same speed if radius of turn will be reduced?
Answer
  • Increase itself.
  • Decrease itself.
  • Remain unchanged.
  • Decrease itself to zero.

Question 73

Question
How will the centrifugal force change if (at the same linear speed) you decrease the radius?
Answer
  • It will increase.
  • It will decrease.
  • It will remain unchanged.
  • It will decrease to zero.

Question 74

Question
How does the minimum speed and maximum level flight speed change with increasing altitude?
Answer
  • Vmin increases / Vmax decreases.
  • Vmin increases / Vmax increases.
  • Vmin decreases / Vmax decreases.
  • Vmin decreases / Vmax increases.

Question 75

Question
What changes in the arcraft attitude are be responsible for creation of the giroscopic moment of powerplant?
Answer
  • Pitch, yaw.
  • Pitch, roll.
  • Yaw, roll.
  • Acceleration- braking.

Question 76

Question
If the wing autorotation is not stopped by the pilot:
Answer
  • The airplane will automatically go into the flight phase called spin.
  • The airplane will automatically go into the flight phase called static stall.
  • The airplane will automatically go into the flight phase called dynamic stall.
  • The airplane wili automatically go into the flight phase called spiral.

Question 77

Question
If the advance ratio increases:
Answer
  • Angles of attack of individual prop blade sections decrease.
  • Angles of attack of individual prop blade sections increase.
  • Angles of attack of individual prop blade sections decreasedoes not change.
  • Angles of attack of individual prop blade sections reach critical values.

Question 78

Question
If the aircraft center of gravity coincides with the neutral point:
Answer
  • The airplane is neither stable nor unstable.
  • The airplane is stable.
  • The airplane is unstable.
  • The airplane is uncontrollable.

Question 79

Question
If the center of gravity of the airplane with a cambered aerofoil is placed forward of the neutral point:
Answer
  • The airplane is stable.
  • The airplane is unstable.
  • The airplane is statically neutral.
  • The airplane is neither stable nor notunstable.

Question 80

Question
If the center of gravity of the airplane with a cambered aerofoil is placed aft of the neutral balance center:
Answer
  • The airplane is unstable.
  • The airplane is not steering.
  • The airplane is stable.
  • The airplane is neither stable nor unstable.

Question 81

Question
If the speed of flight is significantly increased (fixed pitch propeller):
Answer
  • Blade angle of attack decreases.
  • Blade angle of attack increases slightly.
  • Blade angle of attack does not change.
  • Blade angle of attack increases substantially.

Question 82

Question
If the RPM of the fixed pitch propeller is significantly incrased:
Answer
  • Blade angle of attack increases.
  • Blade angle of attack decreases slightly.
  • Blade angle of attack does not change.
  • Blade angle of attack considerably decrease.

Question 83

Question
Angles of attack of individual propeller sections reach a negative value:
Answer
  • If the advance ratio is sufficiently large.
  • If the advance ratio is negative.
  • If the advance ratio equals zero.
  • If the advance ratio equals one.

Question 84

Question
When is the blade angle of attack alpha = 0°?
Answer
  • When the propeller slip = 0.
  • When the airplane speed = 0.
  • When the effective propeller pitch propeller = 0.
  • Never.

Question 85

Question
When does the slip of the fixed pitch propeller in a GA airplane equals the geometric pitch?
Answer
  • When the airplane speed = 0.
  • When the blade angle of attack = 0°.
  • Never.
  • When the advance ratio = 1.

Question 86

Question
When does the slip of the fixed pitch propeller in a GA airplane equals zero?
Answer
  • When the blade angle of attack = 0°.
  • Never.
  • When the advance ratio = 0.
  • When the airplane speed = 0.

Question 87

Question
When does the geometric pitch of a fixed pitch propeller in a GA aeroplane equals the effective pitch?
Answer
  • When the blade angle of attack = 0°.
  • When the airplane speed = 0.
  • Never.
  • When the advance ratio = 0.

Question 88

Question
When does the geometric pitch of a fixed pitch propeller in a GA aeroplane equals zero?
Answer
  • Never.
  • When the advance ratio = 0.
  • When the airplane speed = 0.
  • When the blade angle od attack = 0°.

Question 89

Question
When does the effective pitch of a fixed pitch propeller in a GA aeroplane equal zero?
Answer
  • When the airplane speed = 0.
  • When the blade angle of attack = 0°.
  • Never.
  • When the advance ratio = 1.

Question 90

Question
Which of the following changes is not caused by an increase in the engine thrust?
Answer
  • A change the aileron hinge moment.
  • A change in a pitch-down moment.
  • A change in angle of attack of the horizontal tailplane.
  • A sudden change in the horizontal tailplane airflow speed.

Question 91

Question
Wich design feature is not meant to compensate for the slipstream effect?
Answer
  • Rudder aerodynamic compensation.
  • Fixed rudder balance tab.
  • Rudder offset.
  • Asymmetrical profile of the rudder.

Question 92

Question
Which description fits the physical unit called "available power"?
Answer
  • The ratio of work done to the time it's been done within - unit Watt [W].
  • The product of the work done and time it's been done within - unit Watt [W].
  • The ratio of work done to the time it's been done within - unit joule [J].
  • The product of work done and the time it's been done within - unit joule [J].

Question 93

Question
Which description of the physical quantity characterizes the work done?
Answer
  • The product of force and distance - joule [J].
  • The ratio of force to distance - joule [J].
  • The product of force and distance - Watt [W].
  • The ratio of force to distance - Watt [W].

Question 94

Question
A plane is flown at an angle of attack, for which the drag coefficient CD is at its minimum. As a result of a slight increase of the angle of attack:
Answer
  • The ratio CL / CD increases.
  • The ratio CL / CD decreases.
  • The ratio CL / CD does not change.
  • The airframe glide ratio does not change.

Question 95

Question
A plane is flown at an angle of attack, for which the drag coefficient CD is at its minimum. As a result of a slight increase of the angle of attack:
Answer
  • The airframe glide ratio increases.
  • The airframe glide ratio decreases.
  • The airframe glide ratio does not change.
  • The ratio CL / CD decreases.

Question 96

Question
The measure of static stability is a derivative of Mx = dM / dx, called the "time derivative of M with respect to variable x". What value of the derivative determines instability?
Answer
  • A positive (+).
  • Negative (-).
  • The mark does not matter.
  • Depends on the variable x.

Question 97

Question
Eccentricity (decentralization) of the propeller means that:
Answer
  • The propeller thrust vector axis does not go through the airplane's center of gravity
  • The propeller thrust vector axis does not go through the airplane's engine shaft center.
  • The propeller thrust vector axis does not go through the airplane's center of pressure.
  • The propeller thrust vector axis does not go through the airplane's geometric center.

Question 98

Question
Eccentricity (decentration)of the propeller:
Answer
  • Causes changes in the yawing and/or pitching moments.
  • Causes changes in the aircraft rolling moments.
  • Causes changes in the lateral plane balancing.
  • Does not cause any significant changes affecting the controlability of the airplane.

Question 99

Question
The engine gyroscopic moment disappears when the following ceases:
Answer
  • The angular velocity of changes.
  • The angular acceleration of changes.
  • The centripetal acceleration of changes.
  • The centrifugal acceleration of changes.

Question 100

Question
The yawing moment that is caused by the aerodynamic force acting on the vertical fin due to an asymmetric airflow behind the propeller is called:
Answer
  • Slipstream effect.
  • Drag moment.
  • Giroscopic moment.
  • Eccentric moment.

Question 101

Question
At low airplane speed the highest propeller efficiency is achieved:
Answer
  • With low geometric pitch.
  • With high geometric pitch.
  • With low effectivepitch.
  • With high effective pitch.

Question 102

Question
Na rodzaj korkociągu główny wpływ mają następujące czynniki. The type of spin is mainly influenced by the following factors:
Answer
  • Położenie środka ciężkości samolotu; -rozłożenie mas na samolocie; - usytuowanie i wielkość usterzeń. The plecement of center of gravity of the airplane; -distribution of mass in The airplane; -location and size of the tailplane.
  • Położenie środka ciężkości samolotu; -rozłożenie mas na samolocie; - ustawienie klapki wyważającej. The plecement of center of gravity of the airplane; -distribution of mass in the airplane; -trim tabs settings.
  • Rozłożenie mas na samolocie; - ustawienie klapki wyważającej ; - usytuowanie i wielkość usterzeń. Distribution of mass in the airplane; - trim tabs settings ;-location and size of the tailplane
  • Ustawienie klapki wyważającej ; - położenie środka ciężkości samolotu; - usytuowanie i wielkość usterzeń. Trim tabs settings; -center of gravity of the airplane; -location and size of the tailplane.

Question 103

Question
The smallest rate of descent in glide flight is when the plane is flown with the following speed:
Answer
  • Economic.
  • Optimal.
  • Minimum.
  • Different depending on whether the plane is downwind or upwind.

Question 104

Question
The highest glide ratio in a glide is achieved when the plane is flown (in a calm air) with the following speed:
Answer
  • Optimal.
  • Minimum.
  • Mc Credy'ego.
  • Economic.

Question 105

Question
Power load is called:
Answer
  • The ratio of the engine power to the weight of the aircraft.
  • The ratio of the necessary power to the aircraft weight.
  • The ratio of the weight of the airplane engine power.
  • The ratio of the weight of the aircraft to the necessary power.

Question 106

Question
Objawem przejścia samolotu do lotu w fazie przeciągnięcia jest zazwyczaj: Symptom of an airplane in the transition phase is usually:
Answer
  • Występowanie drgań samolotu lub sterów; -samoczynne zwiększanie pochylenia. Among the symptoms of a stalled airplane are usually:
  • Występowanie drgań samolotu lub sterów; -samoczynne zwiększanie prędkości postępowej. Plane vibration or controls vibration; airspeed increase.
  • Zmniejszanie prędkości opadania; - samoczynne zwiększanie prędkości postępowej. Rate of descent reduction; airspeed increase.
  • Samoczynne zwiększanie pochylenia; -zmniejszanie prędkości opadania. Pitch-down movement; rate of descent reduction.

Question 107

Question
Interference drag is caused by:
Answer
  • An airflow distortion at places where aircraft components join together.
  • Interference of drag induced at the airfoil.
  • Formation of vortices at airfoil tips.
  • Wave interference in subsonic flows.

Question 108

Question
Pulling the yoke causes:
Answer
  • Increase in aircraft load factor "n".
  • Reduction in aircraft load factor "n".
  • Increase in the coefficient of drag, which causes a reduction in load factor "n".
  • Change in load factor "n" value from positive to negative.

Question 109

Question
During the stability analysis of plane it is necessary to take into account:
Answer
  • The balance of forces and moments acting on the plane.
  • The balance of forces acting on an airplane.
  • The balance of moments acting on the plane.
  • Only the mass distribution within the plane.

Question 110

Question
When you yaw the airplane, the powerplant giroscopic moment:
Answer
  • Causes pitch.
  • Causes additional yaw.
  • Does not cause a significant change.
  • Causes roll.

Question 111

Question
When you pitch the airplane, the powerplant giroskopic moment:
Answer
  • Causes yaw.
  • Causes roll.
  • Causes additional pitch.
  • Does not cause additional changes.

Question 112

Question
During the approach to landing on an airplane with a variable pitch:
Answer
  • After the reduction of manifold pressure the propeller shall be set to fine pitch.
  • After the reduction of manifold pressure the propeller shall be set to coarse pitch.
  • After setting the propeller to fine pitch the mainfold pressure shall be reduced.
  • After setting the propeller to fine pitch the mainfold pressure shall be increased.

Question 113

Question
When you perform an engine test before flight the advance ratio is:
Answer
  • Zero.
  • Greater than zero.
  • Less than zero.
  • Equal to Y.

Question 114

Question
When you roll the airplane, the powerplant giroscopic moment:
Answer
  • Does not cause any significant change.
  • Causes yaw.
  • Causes pitch.
  • Causes additional roll.

Question 115

Question
During steady level flight, the rotating propeller is trying to turn the plane in the direction opposite to the direction of rotation of the blade. That torque is called:
Answer
  • Momentem oporowym. Torque reaction.
  • Momentem giroskopowym. Giroscopic torque.
  • Momentem mimośrodowym. Eccentric torque.
  • Momentem napędowym. Driving torque.

Question 116

Question
During maneuvers the pilot operates in a feedback loop to respond to the received signals. What are those main signals?
Answer
  • Signals of the flight path location.
  • Vibration of controls.
  • Sound Impressions.
  • Load factors

Question 117

Question
Location of center of pressure on a symmetrical profile, with an increasing angle of attack:
Answer
  • Is constant.
  • Moves aft.
  • Moves forward.
  • Is not fixed and depends on the speed of flight.

Question 118

Question
Propeller slip is:
Answer
  • The difference between geometric and effective pitch.
  • The difference between effective and geometric pitch.
  • The difference between geometric pitch and advanced ratio.
  • The difference between effective speed and advanced ratio.

Question 119

Question
Dynamic stall differes from the static stall, because during the dynamic one:
Answer
  • There is a rapid change of wing angle of attack.
  • There is a slow change of wing angle of attack.
  • The airplane is dynamically stable.
  • The airplane is statically stable.

Question 120

Question
Stall is a state in which:
Answer
  • Flight takes place above critical angle of attack.
  • Flight takes place at a critical angle of attack.
  • Flight takes place at subcritical angle of attack.
  • The airplane does not respond to rudder deflection due to the low-speed.

Question 121

Question
Increase of the aircraft pitching moment "Delta M" resulting from the yoke movement is Delta M = Delta L * lH, where:
Answer
  • lH – odległość między środkiem ciężkości samolotu i środkiem aerodynamicznym usterzenia poziomego; Delta PZH – przyrost siły nośnej na usterzeniu wysokości. lH - the distance between the center of gravity of the airplane and the horizontal tailplane aerodynamic center; Delta L - increase of the lift force on the elevator.
  • lH - the distance between the wing aerodynamic center and and the horizontal tailplane aerodynamic center; Delta L - increase of the lift force on the elevator.
  • lH- the distance between the wing aerodynamic center and and the horizontal tailplane aerodynamic center; Delta L - increase of the aerodynamic force on the elevator.
  • lH – odległość między środkiem ciężkości samolotu i środkiem aerodynamicznym usterzenia poziomego; Delta PZH – przyrost siły aerodynamicznej na usterzeniu wysokości. lH- the distance between the center of gravity of the airplane and the horizontal tailplane aerodynamic center; Delta L - increase of the lift force on the elevator.

Question 122

Question
When considering the stability of the airplane in an Cartesian (XYZ) coordinate system, we assume that all three axes pass through:
Answer
  • Center of gravity of the airplane.
  • The aerodynamic center of aerofoil.
  • The aerodynamic center of the aircraft.
  • The neutral point of the plane.

Question 123

Question
The aircraft flies horizontally at economic speed. To establish horizontal fly with minimal speed (Vs) we should to do:
Answer
  • Reduce speed.
  • Push the aerodynamic center of the airfoil.
  • All answers are wrong.
  • Shift a neutral centre of plane balance.

Question 124

Question
An airplane during stall configuration is:
Answer
  • Unstable statically longitudinally and laterally.
  • Only unstable statically longitudinally.
  • Only unstable statically laterally.
  • Statically stable laterally and longitudinally.

Question 125

Question
The plane in the spin phase is characterized by:
Answer
  • Static longitudinal unstability.
  • Increased static longitudinal stability.
  • Reduced static longitudinal stability.
  • Neutral static longitudinal stability.

Question 126

Question
Aircrafts used in general aviation are usually constructed that:
Answer
  • After developed going into a spin, it will be the steep spin.
  • After developed going into a spin, it will be the flat spin.
  • It is unable developed into a spin.
  • Immediately, followed self-removal recover from a spin.

Question 127

Question
The geometric Pitch of the propeller is
Answer
  • The theoretical distance moved forward in each complete revolution of the propeller.
  • The theoretical distance moved forward in each complete revolution when blades are set on angle of attack (AoA) alpha<0 °.
  • The theoretical distance moved forward in each complete revolution when blades are set on angle of attack (AoA) alpha>0 °.
  • The theoretical distance moved forward in each complete revolution when blades are set on angle of attack (AoA) alpha = ß.

Question 128

Question
Actual pitch propeller:
Answer
  • The actual distance moved forward in each complete revolution of propeller.
  • The actual distance moved forward in each complete revolution of propeller when blades are set on angle of attack (AoA) alpha = 0 °
  • The actual distance moved forward in each complete revolution of propeller when blades are set on angle of attack (AoA) alpha = ß
  • The way which will take suitable choice point of the propeller during an one full revolution.

Question 129

Question
The propeller efficiency is equal zero only when:
Answer
  • Ciąg śmigła T=0 lub posuw śmigła =0. Thrust of propeller is T = 0 or the advance ratio of "J" is = 0 J=V/NxD where V=TAS in feet/sec, N=propeller rotation/sec, D=propeller diametr in inch.
  • Ciąg śmigła T=0 i posuw śmigła =0. Thrust of propeller is T = 0 and the advance ratio of "J" is = 0 J=V/NxD where V=TAS in feet/sec, N=propeller rotation/sec, D=propeller diametr in inch.
  • Ciąg śmigła T=0. Thrust of propeller is T = 0.
  • Posuw śmigła =0. The advance ratio of "J" J=V/NxD where V=TAS in feet/sec, N=propeller rotation/sec, D=propeller diametr in inch.

Question 130

Question
The state of balance, when the mass is usually existing and to which always returns after being displaced from a given equilibrium position is named:
Answer
  • Static stability.
  • Statically unstable.
  • Statically neutral.
  • Dynamic stability.

Question 131

Question
Dynamic lateral stability mainly depends from:
Answer
  • The dihedral - the fin and rudder areas - the distance between tailplane centre of pressure (CP) and centre of gravity (CG).
  • The dihedral - the fin and rudder areas - the tailplane areas.
  • The fin and rudder areas - the tailplane areas - the distance between tailplane centre of pressure (CP) and centre of gravity (CG).
  • The distance between tailplane centre of pressure (CP) and centre of gravity (CG) - the dihedral.

Question 132

Question
Dynamic longitudinal stability mainly depends from:
Answer
  • The layout of plane masses - the fin and the rudder areas - the distance between tailplane centre of gravity (CG) and centre of gravity (CG).
  • The layout of plane masses - the size of stabilizer - the size of fin and rudder.
  • The area of stabilizer - the size of fin and stabilizer- the distance between tailplane centre of pressure (CP) and centre of gravity (CG).
  • The area of fin and rudder - the distance between tailplane centre of pressure (CP) and centre of gravity and the layout of plane masses.

Question 133

Question
Dynamic stability is:
Answer
  • The ability to self-balance return of the aircraft to given equilibrium position after cessation of interference.
  • The ability to maintain balance and prevent of its change.
  • The ability to change the steady-state flight under an affect of the suitable action of the control.
  • The ability to maintain control of the aircraft which is operate under external dynamic loads.

Question 134

Question
Static directional stability depends from:
Answer
  • The fin and rudder area - the distance of the empennage from the center of gravity.
  • The the fin and rudder area - the wing area.
  • The tailplane position from the centre of gravity (CG) - the load of the aircraft.
  • The wing surface - the load of the aircraft.

Question 135

Question
Static longitudinal stability mainly depends from:
Answer
  • Position of the centre of gravity (CG) of the airplane - the tailplane area and the tailplane position from the centre of gravity (CG).
  • Position of the centre of gravity (CG) of the airplane - the tailplane area and of the fin and rudder area.
  • The tailplane area - the fin and rudder area - the tailplane position from the centre of gravity (CG).
  • The fin and rudder area - the tailplane position from the centre of gravity (CG) - the position of the centre of gravity (CG) of the airplane.

Question 136

Question
Static lateral stability mainly depends from:
Answer
  • The dihedral, the area of the fin and rudder, the high wing or low-wing position.
  • The dihedral, the area of the fin and rudder, the position of centre gravity (CG) of the airplane.
  • The area of the fin and rudder, the position of centre gravity (CG) of the airplane- or a the high wing or lowwing position.
  • The centre of gravity (CG) of the airplane, the high wing or low-wing position and the dihedral.

Question 137

Question
Static stability is:
Answer
  • The initial tendency that an aircraft displays after being displaced from a given equilibrium position.
  • The ability to change the a given equilibrium position by the influence of suitable flying control surface.
  • Ability to maintain an aircraft control inflenced by external dynamic forces.
  • The ability to self-balance equilibrium position return of the aricraft, when interference will stop.

Question 138

Question
A controllability is:
Answer
  • The ability to alter of the fixed flight by using of the flying control surfaces.
  • The ability to perform large movements with use of the control column and ruddler.
  • The ability to self-balance return to equilibrium when will stop operate interferences.
  • The ability to maintain balance and prevent of its change.

Question 139

Question
The ratio of work done by the propeller to the power consumed by a propeller from the engine is called:
Answer
  • The propeller efficiency.
  • The propeller-feed.
  • The slipslipping Propeller.
  • The propeller pitch.

Question 140

Question
Stosunek prędkości lotu "V" do prędkości obwodowej danego przekroju śmigła "u" nazywamy: The quatient of airspeed TAS to Revolution per Minute (RPM) of the propeller blade cross-section is called:
Answer
  • Posuwem. The advance ratio of "J" J=V/NxD where V=TAS in feet/sec, N=propeller rotation/sec, D=propeller diametr in inch.
  • Poślizgiem geometrycznym. The geometric pitch.
  • Poślizgiem aerodynamicznym. The effective pitch.
  • Skokiem śmigła. The teoretical distance moved.

Question 141

Question
Propeller of aircraft, in order to maximize of efficiency should to be:
Answer
  • Twisted geometrically so that the angle of attack of consecutive blade cross-sections during of the flight was similar.
  • Twisted geometrically so that the angle of attack of consecutive blade crosssections increase with distance from the axis of the propeller rotation.
  • Twisted geometrically so that the angle of attack of consecutive blade crosssections decrease as the distance from the axis of the propeller rotation.
  • Twisted geometrically so that the angle of attack of consecutive blade crosssections is similar to the critical angle of attack (AoA).

Question 142

Question
In order to recovery of the plane from autorotation (spin) it is necesary:
Answer
  • Push down the full stick, apply full opposite rudder into the direction of rotation.
  • Apply full opposite rudder into the rotation of the spin, pull up the stick.
  • Apply roll ailerons into the opposite direction of roll, pull up the stick.
  • Apply roll ailerons into the opposite direction of roll, push down the stick.

Question 143

Question
W celu wyprowadzenia samolotu z fazy przeciągnięcia do lotu ustalonego należy: Apply roll ailerons into the opposite direction of roll, push down the stick.
Answer
  • Zwiększyć siłę nośną na skrzydle poprzez oddanie drążka sterowego.Increase the lift on the wing by push down of the stick or control column.
  • Zwiększyć siłę nośną na skrzydle poprzez pociągnięcie drążka sterowego. Increase the lift on the wing by pull up of the stick or control column.
  • Zmniejszyć siłę nośną na skrzydle poprzez pociągnięcie drążka sterowego. Reduce the lift on the wing by pull up of the stick or control column.
  • Zmniejszyć siłę nośną na skrzydle poprzez oddanie drążka sterowego. Reduce the lift on the wing by push down of the stick or control column.

Question 144

Question
In order to recovery of the plane from the spin in following sequence:
Answer
  • Push down the full stick, apply full opposite rudder into the rotation of the spin, after the terminate of rotation set rudder in neutral possition and recover from the dive.
  • Apply full opposite rudder into the rotation of the spin, pull up the stick,after the terminate of rotation set rudder in neutral possition and recover from the dive.
  • Apply roll ailerons into the opposite direction of roll, pull up the stick, after the terminate of rotation set rudder in neutral possition and recover from the dive.
  • Apply roll ailerons into the opposite direction of roll, push down the stick, after the terminate of rotation set rudder in neutral possition and recover from the dive.

Question 145

Question
W celu zmniejszenia pochylenia samolotu: In order to reduce the inclination of the plane:
Answer
  • Należy wychylić drążek sterowy na siebie. The stick shall to be pulled.
  • Należy wychylić ster wysokości w dół. The elevator or stabilator should to be pushed downward.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w górę” . The vector of incease of the lift on the elevator or stabilator must to have into up direction.
  • Przyrost momentu pochylającego samolot musi mieć wartość dodatnią. The increase of the pitching moment of the aircraft must to have a positive value.

Question 146

Question
W celu zmniejszenia pochylenia samolotu: In order to reduce the inclination of the plane:
Answer
  • Przyrost momentu pochylającego samolot musi mieć wartość do ujemną. The increase of the pitching moment of the aircraft must to have a negative value.
  • Należy wychylić ster wysokości w dół. The elevator or stabilator should to be pushed downward.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w górę”. The vector of incease of the lift on the elevator or stabilator must to have into up direction.
  • Należy wychylić drążek sterowy od siebie. The stick shall to be pushed.

Question 147

Question
W celu zmniejszenia pochylenia samolotu: In order to reduce the inclination of the plane:
Answer
  • Należy wychylić ster wysokości w górę.The elevator or stabilator should to be pushed upward.
  • Przyrost momentu pochylającego samolot musi mieć wartość dodatnią. The increase of the pitching moment of the aircraft must to have a positive value.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w górę” . The vector of incease of the lift on the elevator or stabilator must to have into up direction.
  • Należy wychylić drążek sterowy od siebie. The stick shall to be pushed.

Question 148

Question
W celu zmniejszenia pochylenia samolotu: In order to reduce the inclination of the plane:
Answer
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w dół” . The vector of incease of the lift on the elevator or stabilator must to have into down direction.
  • Należy wychylić ster wysokości w dół. The elevator or stabilator should to be pushed downward.
  • Przyrost momentu pochylającego samolot musi mieć wartość dodatnią. The increase of the pitching moment of the aircraft must to have a positive value.
  • Należy wychylić drążek sterowy od siebie.The stick shall to be pushed.

Question 149

Question
W celu zwiększenia pochylenia samolotu: In order to increase the inclination of the plane:
Answer
  • Należy wychylić drążek sterowy od siebie. The stick shall to be pulled.
  • Przyrost momentu pochylającego samolot musi mieć wartość do ujemną. The increase of the pitching moment of the aircraft must to have a negative value.
  • Należy wychylić ster wysokości do góry. The elevator or stabilator should to be pushed downward.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w dół”. The vector of incease of the lift on the elevator or stabilator must to have into down direction.

Question 150

Question
W celu zwiększenia pochylenia samolotu: In order to increase the inclination of the plane:
Answer
  • Należy wychylić ster wysokości w dół. The elevator or stabilator should to be pushed downward.
  • Należy wychylić drążek sterowy na siebie. The stick shall to be pulled.
  • Przyrost momentu pochylającego samolot musi mieć wartość do ujemną. The increase of the pitching moment of the aircraft must to have a negative value.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w dół”.The vector of incease of the lift on the elevator or stabilator must to have into down direction.

Question 151

Question
W celu zwiększenia pochylenia samolotu: In order to increase the inclination of the plane:
Answer
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „w górę”. The vector of incease of the lift on the elevator or stabilator must to have into up direction.
  • Należy wychylić drążek sterowy na siebie. The elevator shoud to be upward.
  • Należy wychylić ster wysokości do góry. The stick shall to be pulled.
  • Przyrost momentu pochylającego samolot musi mieć wartość do ujemną. Increasing of the aircraft nose-down pitch moment must be positive.

Question 152

Question
W celu zwiększenia pochylenia samolotu: To increase up the pitch of the plane we should to do:
Answer
  • Wszystkie odpowiedzi są poprawne. All responses are correct.
  • Przyrost momentu pochylającego samolot musi mieć wartość dodatnią. Increasing of the aircraft nose-up pitch moment must to be positive.
  • Wektor przyrostu siły nośnej na usterzeniu poziomym musi mieć zwrot „do góry”. Increase of the lift force vector on the horizontal tail assembly.
  • Należy wychylić drążek sterowy na siebie. The stick shall to be pulled.

Question 153

Question
In which document are there information about the performance of the aircraft (helicopter, aircraft, etc.)?
Answer
  • In an Aeroplane Flight Manual(AFM) or a Pilot Operational Handbook (POH)
  • In the Technical Manual.
  • In the service bulletins of Civil Aircraft Inspectorate Board.
  • The Civil Aviation Authority regulations.

Question 154

Question
In case when the propeller angle of attack(AoA) is equals the blade angle of the propeller it is true that:
Answer
  • The slip of propeller is = 0 also the effective and geometric pitch are the equal.
  • The slip of propeller is = 0 and propeller effective and geometric pitch are = 0.
  • The slip of propeller is = 0 and the propeller slip is negative.
  • The Airspeed of plane is nu = 0 and the propeller slip is = 0.

Question 155

Question
In an quiet air, the glide-angle with off an engine during incease of aicraft load:
Answer
  • Remains unchanged.
  • Increases.
  • Decreases.
  • Is changes and can be read by drawing the speed polar of plane.

Question 156

Question
In a fixed straight horizontal flight the load factor of plane is:
Answer
  • n=1
  • n=0
  • 0 <n> 1
  • n>1

Question 157

Question
In the fixed turn of plane the load factor "n" is:
Answer
  • n>1
  • n=1
  • n=0
  • 0<n<1

Question 158

Question
W wyniku niewielkiego zwiększania kąta natarcia alpha=alpha optymalne: As a achieving result of the glide-angle:
Answer
  • Procentowe zwiększenie Cx będzie większe od procentowego zwiększenia Cz. The L/D ratio will achieve the maximum of value.
  • Procentowe zwiększenie Cz’+F2396 będzie większe od procentowego zwiększenia Cx. The proportional increase of CL will not increse from of the proportional increase of Cd.
  • Procentowe zwiększenie Cx będzie takie same jak procentowe zwiększenia Cz. The proportional increase in Cx will be the same as the proportional increase in Sun.
  • Doskonałość profilu nieznacznie wzrośnie. The proportional increse of Cx will be greather then the proportional increse od Cl.

Question 159

Question
W wyniku niewielkiego zwiększania kąta natarcia &alpha;=&alpha; optymalne : As a result of a slight increase of the angle of attack (AoA) over glide-angle:
Answer
  • Stosunek Cz/Cx zmaleje. The L/D ratio of airfoil will increase.
  • Stosunek Cz/Cx wzrośnie. The ratio of D/L will increase.
  • Stosunek Cz/Cx nie zmieni się. The ratio of L/D will will not change.
  • Doskonałość profilu nieznacznie wzrośnie. The ratio of L/D will will decrease.

Question 160

Question
W wyniku niewielkiego zwiększania kąta natarcia &alpha;=&alpha; optymalne : As a result of a slightly increase the angle of attack (AoA) over glide-angle:
Answer
  • Doskonałość profilu zmaleje . The L/D ratio of airfoil will increase.
  • Doskonałość profilu wzrośnie. The L/D ratio of airfoil will decrease.
  • Doskonałość profilu nie zmieni się. The L/D ratio of airfoil will not change.
  • Stosunek Cz/Cx wzrośnie. The D/L ratio of airfoil will increase.

Question 161

Question
Aileron deflection to the left during the stall will cause:
Answer
  • Roll of the plane to the right and start autorotation.
  • Roll of the plane to the left.
  • Roll of the plane to the right till the return of the stick into the neutral position.
  • Roll of the plane to the left till to the return of the stick into the neutral position.

Question 162

Question
Flap deflection is usually accompanied by:
Answer
  • Increase of the Cz, increase of the Cx and decrease of the L/D ratio.
  • Increase of the Cz, increase of the Cx and increase of the L/D ratio.
  • Increase of the Cz, increase of the Cx not changed of the L/D ratio.
  • Displacement of the neutral balance center of the plane.

Question 163

Question
Wykres zależności Cz = f(Cx) wykonany na podstawie pomiarów w czasie lotu nazywamy: A graph the allegiance of the CD as a function of the CL Cl = f (Cx) performed on the basis of measurements during a flight, is called:
Answer
  • Biegunową samolotu.The Drag Polar of the aircraft.
  • Biegunową prędkości samolotu. The speed polar of the aircraft.
  • Biegunową profilu. The wing polar.
  • Biegunową skrzydła. The airfoil polar.

Question 164

Question
Which property is related to a decrease of airflow in the boundary layer of airofoil?
Answer
  • The viscous of the air.
  • The air density.
  • The stagnacy of the air
  • The air ballance.

Question 165

Question
Zaleca się, aby zmiana mocy z przelotowej na nominalną (śmigło o przestawianym skoku) odbywała się w następujący sposób: It is recommended that the change of cruising power to nominal (controllable pitch propeller (CPP) or variable pitch propeller) is made as follows:
Answer
  • Zmniejszenie skoku śmigła, a później zwiększenie ciśnienia ładowania. First increasing of a propeller pitch and then increase of the throttle.
  • Zmniejszenie ciśnienia ładowania, a później zwiększenie skoku śmigła. First reducing of the throttle then increasing of the propeller pitch.
  • Zwiększenie skoku śmigła, a później zmniejszenie ciśnienia ładowania. Increasing of the propeller pitch, and then reducing of the throttle.
  • Zwiększenie ciśnienia ładowania, a później zmniejszenie skoku śmigła skoku śmigła. Increasing throttle and then decrease of the propeller pitch.

Question 166

Question
It is recommended that the change of take off power to nominal (controllable pitch propeller (CPP) or variable pitch propeller) is made as follows:
Answer
  • First reducing of the throttle next increasing the propeller pitch.
  • First increasing the propeller pitch next reducing the throttle.
  • Increase throttle next decrease the propeller pitch.
  • Reducing of propeller pitch next increase the throttle.

Question 167

Question
Zapas stateczności statycznej podłużnej samolotu to: An aircraft static margin of a static longitudinal stability this is:
Answer
  • Odległość pomiędzy środkiem ciężkości samolotu i środkiem równowagi obojętnej. The distance between the Center of Gravity of the aircraft and the Neutral Point.
  • Odległość pomiędzy środkiem ciężkości samolotu i środkiem aerodynamicznym The distance between the Center of Gravity of the airplane and aerodynamic center (AC).
  • Odległość pomiędzy środkiem równowagi obojętnej i środkiem aerodynamicznym płata. The distance between the Neutral balance center and the aerodynamic center (AC).
  • Odległość pomiędzy środkiem aerodynamicznym usterzenia i środkiem aerodynamicznym płata. The distance between the aerodynamic center of control surface and the aerodynamice center of the wing.

Question 168

Question
The ability to self-acting return of airplane into equilibrium position after cessation of disturbance is called:
Answer
  • The Dynamic Stability.
  • The static stability.
  • The Static Controllability.
  • The Dynamic controllability.

Question 169

Question
Zwichrzenie aerodynamiczne płata charakteryzuje się tym, że: An aerodynamic twist angle of a wing is characterized by:
Answer
  • Na końcówkach płata stosuje się profile, na których oderwanie strug dla alpha;kryt jest mniej intensywne. On the tips od the wings there are airfoils, where the separated airflow leaving the wing for Absolute Angle of Attack (Absolute AoA) is less intense.
  • Cięciwy profilów geometrycznych w kolejnych przekrojach nie leżą w jednej płaszczyźnie. Tips of wings are twistet down when speed is equal to 0.
  • Końcówki płata wygięte są w dół, jeżeli prędkość napływu strug =0. Tips of wings are twistet down when speed is equal to 0.
  • Końcówki płata wygięte są w górę podczas lotu. Tips of wings are curved up during in flight.

Question 170

Question
Zwichrzenie geometryczne płata charakteryzuje się tym, że: A geometric twist of a wing is characterized by:
Answer
  • Cięciwy profili geometrycznych w kolejnych przekrojach nie leżą w jednej płaszczyźnie. Geometric chord profiles in subsequent sections do not lie in one plane.
  • Końcówki płata wygięte są w dół, jeżeli prędkość napływu strug =0. Tips of wings are twistet down when speed is equal to 0.
  • Końcówki płata wygięte są w górę podczas lotu. Tips of wings are curved up during in flight.
  • Na końcówkach płata stosuje się profile, na których oderwanie strug dla alpha;kryt jest mniej intensywne. On the tips od the wings there are airfoils, where the separated airflow leaving the wing for Absolute Angle of Attack (Absolute AoA) is less intense.

Question 171

Question
Zwiększenie obciążenia jednostkowego powierzchni powoduje: Increasing the unit loading of the planform area causes:
Answer
  • Wydłużenie długości staru i lądowania - wzrost prędkości minimalnej - spadek maksymalnej prędkości wznoszenia. Take off and landing distance extending- increase of minimal speed (Vs)- decrease in maximal climbing rate(RoCmax).
  • Skrócenie długości startu i lądowania - wzrost prędkości minimalnej - spadek maksymalnej prędkości. Reducing of Take off and landing distance - increse in minimal speed(Vs) - decrease in maximal climbing rate(RoCmax).
  • Wydłużenie długości startu i lądowania - spadek prędkości minimalnej - spadek maksymalnej prędkości wznoszenia. Take off and landing distance extending - decrease of minimal speed(Vs) - decrease in maximal climbing rate(RoCmax).
  • Wydłużenie długości staru i lądowania - wzrost prędkości minimalnej - wzrost maksymalnej prędkości wznoszenia. Take off and landing distance extending - increase in minimal speed(Vs) - increase in maximal climbing rate(RoCmax).
Show full summary Hide full summary

Similar

Concepts in Biology Final Exam
mlszala
The Cold War
dottydiva96
The SAT Test
philip.ellis
Kwasi Enin - College Application Essay
philip.ellis
Revolutions and Turmoil: Russia 1905-1917
Emily Faul
AQA Biology B2 Unit 2.1 - Cells Tissues and Organs
BeccaElaine
Organic Chemistry
Megan Tarbuck
untitled 2
lola_smily
RadioTelefonia
Adriana Forero
I wish I..
Cristina Cabal
NSI / PSCOD/ ASSD
Yuvraj Sunar