Created by sabasta
almost 9 years ago
|
||
Copied by Mathe Queen
almost 8 years ago
|
||
Question | Answer |
\[f(x)=a^x\] | \[ f'(x)=a^x \cdot \ln a \] |
\[ f(x)=\sin x \] | \[ f'(x)=\cos x \] |
\[ f(x)=\cos x \] | \[ f'(x)=-\sin x \] |
\[ f(x)=C \cdot g(x) \] | \[ f'(x)=C \cdot g'(x) \] |
\[ f(x)=[g(x)]^n \] | \[ f'(x)=n \cdot [g(x)]^{n-1} \cdot g'(x) \] |
\[ f(x)=e^x \] | \[ f'(x)=e^x \] |
\[ f(x)=e^{g(x)} \] | \[ f'(x)=e^{g(x)} \cdot g'(x) \] |
\[ f(x)=\sin g(x) \] | \[ f'(x)=\cos g(x) \cdot g'(x) \] |
\[ f(x)=\cos g(x) \] | \[ f'(x)=-\sin g(x) \cdot g'(x) \] |
\[ f(x)=\tan x \] | \[ f'(x)=\frac{1}{cos^2 \cdot x} \] |
\[ f(x)=\ln x \] | \[ f'(x)=\frac{1}{x} \] |
\[ f(x)=\ln g(x) \] | \[ f'(x)=\frac{g'(x)}{g(x)} \] |
\[ f(x)=log_a g(x) \] | \[ f'(x)=\frac{g'(x)}{g(x) \cdot \ln a} \] |
\[ f(x)=log_a x \] | \[ f'(x)=\frac{1}{x \cdot \ln a} \] |
\[ f(x)=a^{g(x)} \] | \[ f'(x)=a^{g(x)} \cdot \ln a \cdot g'(x) \] |
Kettenregel \[ f(x)= f(g(x)) \] | \[ f'(x)=f'(g) \cdot g'(x) \] |
Produktregel \[ f(x)=u(x) \cdot v(x) \] | \[ f'(x)=u'(x) \cdot v(x) + u(x) \cdot v'(x) \] |
Summenregel \[ f(x)=u(x) \pm v(x) \] | \[ f'(x)=u'(x) \pm v'(x) \] |
Quotientenregel \[ f(x)=\frac{u(x)}{v(x)} \] | \[ f'(x)=\frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2} \] |
Want to create your own Flashcards for free with GoConqr? Learn more.