Momentum (Linear and Angular)

Beschreibung

Mindmap am Momentum (Linear and Angular), erstellt von Michael Bueno7256 am 20/11/2014.
Michael Bueno7256
Mindmap von Michael Bueno7256, aktualisiert more than 1 year ago
Michael Bueno7256
Erstellt von Michael Bueno7256 vor etwa 10 Jahre
37
0

Zusammenfassung der Ressource

Momentum (Linear and Angular)
  1. Conservation of momentum
    1. Conservation of energy

      Anmerkungen:

      • Think of energy as a bank account. Energy can be withdrawn, at which point it changes form but it does NOT disapear 
      1. Total momentum of an isolated system is conserved/constant which means that Pf=Pi and Δp = 0, in all directions/dimensions

        Anmerkungen:

        • (if the sum of external forces = 0 is negligible AND no mass enters or leaves)
        1. If ΣWork > 0 then there is ΔP(>0)
          1. 2 Body Collisions (Linear Momentum)
            1. Elastic
              1. A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision
                1. One Dimensional
                  1. Two Dimensional
                    1. Anlagen:

                        1. To find theta between two elastic collisions, use
                      1. To find velocities, we use relative velocity trick, (v2 − v1)f = −(v2 − v1)i
                    2. Inelastic
                      1. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision.
                2. Linear
                  1. Vector
                    1. M= Kg
                      1. V= M/s
                        1. Kgm/s
                      2. Angular Momentum= L
                        1. Vector quantity
                          1. Moment of Inertia - Kg x meters^2
                            1. The rotational analog to mass- it represents an objects rotational inertia. An object's rotational inertia is determined by the chosen axis of rotation and is additive.
                              1. Parallel axis theorem: The moment of inertia of a parallel axis is equal to the moment of inertia of an object's center of mass + the total mass x the distance between the center of mass and the parallel axis of rotation
                            2. Angular Velocity- ω
                              1. Rad/s -> = V/r
                          Zusammenfassung anzeigen Zusammenfassung ausblenden

                          ähnlicher Inhalt

                          Rudimentary Physics Flashcards
                          Adelinda Davis
                          Chapter 7 - Laws of motion and momentum
                          Kieran Lancaster
                          Quantum Mechanics
                          Becca Cassidy
                          Europäische Städte
                          JohannesK
                          Die Aufklärung (Karteikarten)
                          AntonS
                          Einstufungstest Italienisch Niveau A1.2
                          SprachschuleAktiv
                          Klingel und Gleichstrommotor
                          Peter Kasebacher
                          KPOL PuKW
                          Mona Les
                          Latein Vokabeln
                          Einpegasus
                          40.1 Bildungswissenschaft
                          Yvonne Heitland