Introducción a las antiderivadas y su aplicación

Beschreibung

Mapa Mental 5% Realizado por: Radamés Lárez CI:27321874 Calogero Palmeri CI: 26251894 Fabrizio Marrero CI:27752960
Calogero Palmeri
Mindmap von Calogero Palmeri, aktualisiert more than 1 year ago
Calogero Palmeri
Erstellt von Calogero Palmeri vor mehr als 4 Jahre
172
0

Zusammenfassung der Ressource

Introducción a las antiderivadas y su aplicación
  1. Antiderivación
    1. La antiderivación es la operación que se aplica para determinar el conjunto de todas las funciones que tiene una derivada dada.
      1. Se puede decir que que el proceso de la antiderivada es el proceso revertido al de la derivación
        1. Dígase que: Una función H(X) recibe el nombre de antiderivada de G(x) en un intervalo I si H`(x)=G(x) para todo I
          1. Por ejemplo, si tenemos las siguientes funciones elementales: H(x)=x² ; G(x)=x se tiene que H´(x)= x=G(x), entonces concluimos que H(x) es una antiderivada de G(x) en todo R
        2. Ejemplo
      2. Propiedades de las Antiderivadas
        1. La propiedad fundamental de las antiderivadas consiste en que si F(x) es la antiderivada de la función continua f(x), entonces cualquier otra antiderivada f(x) tiene la forma G(x) = F(x) + C para alguna constante C.
        2. Integral Indefinida
          1. Se entiende por integral indefinida de una función f(x) en un intervalo (a; b) al conjunto de todas sus funciones primitivas en dicho intervalo.
            1. Se representa con la notación habitual: ∫ f(x) dx. La función f(x) recibe el nombre de integrando, y la variable x se denomina como variable de integración.
          2. Reglas para Integrar Funciones Elementales
            1. Reglas algebraicas para la integral indefinida
                1. Ejemplos
                      1. Nota: Para el cálculo de las integrales de funciones algebraicas, el truco consiste en transformar el integrando para obtener integrales inmediatas. Algunas veces una manipulación algebraica bastará. En otros casos se va a requerir una sustitución.
                  1. Aplicaciones económicas a la integral indefinida
                    1. El cálculo integral se puede ser usado en una gran cantidad de cosas, para medir longitudes, volúmenes, áreas, etc y este nos permite obtener un resultado útil y preciso.
                      1. Ejemplo
                        1. Costo: El costo total C de producir y comercializar x unidades de un satisfactor está dado por la función C = f(x).
                          1. Ingreso: Dada una cierta función de demanda p = f(q), en donde p es el precio y q el número de unidades a vender
                            1. Ingreso nacional, consumo nacional y ahorro : Sea la función consumo C = f(Y) en donde C es el consumo, y el ingreso nacional total
                        2. Universidad Metropolitana Facultad de Ciencias y Artes Departamento de Matemática
                          1. Asignatura: Cálculo Aplicado II
                            1. Profesora: Hayled Rangel
                              1. Equipo 7: Calogero Palmeri CI: 26251894 , Radames Larez CI:27321874, Fabrizio Marero CI:27752960
                                1. Fecha entrega 10/05/2020
                          2. Referencias Bibliográficas:
                            1. Hoffmann-Bradley-Rosen. Cálculo Aplicado para Administración, Economía y Ciencias Sociales. Mac Graw-Hill. 8va. Ed. México, 2006
                              1. Campus.usal.es. n.d. Tema 5, Integral Indefinida. [online] Disponible en:: http://campus.usal.es/~mpg/Personales/PersonalMAGL/Docencia/TeoriaTema5CalculoCA11-12.pdf [Revisado el 10 May 2020].
                                1. jesusacbe. (2013). Teorema fundamental del cálculo. Recuperado el 10 Mayo 2020, desde https://www.slideshare.net/jesusacbe/teorema-fundamental-del-clculo
                            Zusammenfassung anzeigen Zusammenfassung ausblenden

                            ähnlicher Inhalt

                            Allgemeine Pathologie / Einführung
                            Nicole Nafzger
                            Allgemeinwissen Chemie
                            Cassibodua
                            Gefahrenzeichen
                            Stefan Pw
                            Informatik
                            Tom Kühling
                            Sächsisch Quiz
                            tanja.goldbecher
                            FOST 4 - Inferenzstatistik 2 und qualitative Methoden
                            Kathy H
                            Grundbegriffe der Kunst
                            K Gal
                            GESKO A PR WS 2018/19
                            Caroline Hannah
                            Innere Rind Vetie
                            Anne Käfer