Restklassenringe

Description

Mathematik für Informatiker I (Zahlenmengen) Mind Map on Restklassenringe, created by Maximilian Gillmann on 25/03/2014.
Maximilian Gillmann
Mind Map by Maximilian Gillmann, updated more than 1 year ago
Maximilian Gillmann
Created by Maximilian Gillmann over 10 years ago
42
0

Resource summary

Restklassenringe
  1. RSA Verfahren
    1. Vorbereitung
      1. Wähle zwei große Primzahlen p,q
        1. Produkt N sei p*q
          1. Berchne phi von N
            1. 0 < e < phi(N) und es gibt einen ggT zwischen e und phi(N)
              1. 0 < d < phi(N) und d * e + k * phi(N) = 1
              2. Schlüssel
                1. öffentlich
                  1. (N, e)
                  2. privat
                    1. (p,q,d)
                  3. Die Nachricht m
                    1. Verschlüsselung
                      1. Entschlüsselung
                    2. Eulersche Phi Funktion
                      1. Abbildung die von Z nach N abbildet
                        1. Besteht aus Einheiten des Restklassenrings Z/mZ
                          1. Wenn p eine Primzahl ist gilt immer
                          2. Beispiel
                            1. Uhr
                              1. Caesar Chiffre
                                1. Jeder Buchstabe wird durch den Buchstaben 2 Stellen davor ersetzt
                              2. Chinesischer Restsatz
                                1. n, m teilerfremd
                                2. Eigenschaften
                                  1. endlich viele Element
                                    1. Bedeutung
                                      1. Äquivalenzrelation auf Z
                                        1. Menge der Äquivalenzklassen bilden Restklassenring mit Addition und Multiplikation
                                          1. a und b sind äquivalent wenn ihre Differenz durch m teilbar ist
                                      2. Körper F
                                        1. p sei eine Primzahl
                                        2. Kleiner Fermatscher Satz
                                          1. Es gilt für die Restklasse [a] in Z/mZ
                                            1. a hoch phi von m ist äquivalent zu 1
                                            Show full summary Hide full summary

                                            Similar

                                            Komplexe Zahlen
                                            Maximilian Gillmann
                                            Rationale Zahlen
                                            Maximilian Gillmann
                                            Zahlenmengen
                                            Maximilian Gillmann
                                            Reelle Zahlen
                                            Maximilian Gillmann
                                            Natürliche Zahlen
                                            Maximilian Gillmann
                                            Ganze Zahlen
                                            Maximilian Gillmann
                                            Vektorräume
                                            Maximilian Gillmann
                                            Grundlagen Vektorraum
                                            Maximilian Gillmann
                                            Grundlagen (Mengenlehre und Logik)
                                            Maximilian Gillmann
                                            Bilinearform, Skalarprodukte und Orthogonale Abbildungen
                                            Maximilian Gillmann