null
US
Entrar
Registre-se gratuitamente
Registre-se
Detectamos que o JavaScript não está habilitado no teu navegador. Habilite o Javascript para o funcionamento correto do nosso site. Por favor, leia os
Termos e Condições
para mais informações.
Próximo
Copiar e Editar
Você deve estar logado para concluir esta ação!
Inscreva-se gratuitamente
25683798
Vectores
Descrição
Mapa mental sobre los vectores matrices y determinantes en sus expresiones más generales. #UNAD
Sem etiquetas
vectores
matrices
determinantes
álgebra lineal
Mapa Mental por
Henry Tllo Vill
, atualizado more than 1 year ago
Mais
Menos
Criado por
Henry Tllo Vill
aproximadamente 4 anos atrás
46
0
0
Resumo de Recurso
Vectores
Definición Algebráica: Es la forma en que se representa el vector. Para ello tenemos que se representan de dos formas
Horizontal (Renglón)
Vertical (Columna)
La norma: se define como la distancia entre los puntos A y B que definen el vector, coincidiendo la norma y el módulo AB
La longitud o magnitud: en cualquier representación del vector.
La dirección: El ángulo medido en radianes que forma con el lado + de x
Ángulos Directores:Se forman por el lado positivo de X y deben ser tomados entre 0° y 180° (π)
Vector Unitario: es el proceso por el que normalizamos la magnitud de un vector a 1
Se toma un vector diferente a 0 y su magnitud tambien distinta
Se multiplica por el recíproco de la magnitud, y tenemos:
Propiedades:
Conmutativa: El orden de los sumandos no altera la suma. A+B=B+A
Asociativa: la forma de agruparlos no altera el resultado. (A+B)+C = A+(B+C)
Distributiva: Relaciona la multiplicación y la suma. k(A+B) = kA+kB
Inverso Aditivo: la suma de un vector y su opuesto es cero. A+(-A)=0
Operaciones Básicas:
Suma: Se suma la primera componente de U con la primera de V; y la segunda de U con la segunda de V
Resta de vectores: Es la suma de U con -V, o sea el opuesto de V
Producto por escalar: esta multiplicación es KU o K.U. Se deben satisfacer los siguientes aspectos:
El producto punto es cuando multiplicamos 2 V, el resultado es un escalar
Vector Base: dos vectores U y V con distinta dirección. Cualquier vector del plano se puede poner como combinación lineal de ellos.
Matrices
Resultado de m X n, donde m= renglones; y n= columnas
Tipos de matrices:
Renglón: Contienen una sola fila de componentes
Columna: Compuesta por una sola columna de componentes
Rectangular: Son diferentes cantidades de columnas y filas, siendo m X n.
Traspuesta: es la que se obtiene de A al cambiar los renglones por columnas.
Nula: donde todos los elementos son cero
Cuadrada: contiene el mismo número de filas y de columnas
Triangular superior: los elementos en la diagonal bajo la principal son cero
Triangular inferior: los elementos por encima de la diagonal principal son cero
Diagonal: los que no esten en la principal son nulos.
Escalar: es una diagonal donde todos sus elementos principales son iguales
Identidad o Unidad: es diagonal donde los elementos de la principal son 1.
Regular: Es una cuadrada que tiene inversa
Singular: No tiene matriz inversa
Idempotente: si A2 es= A. O sea que las potencias siempre den la misma matriz
Involutiva: si A2=1. Solo así es de este criterio
Simétrica: es cuadrada que verifica: A=At
Antisimétrica: o hemisimétrica es cuadrada que verifica A=-At
Ortogonal: Si verifica que A * At = 1
Suma de matrices: Se obtiene sumando los elementos de las dos matrices en las mismas posiciones
Propiedades: la suma de 2 matrices da otra matriz de la denotación m X n.
Asociativa: A+(B+C)= (A+B)+C
Neutro: A+0= A. Donde 0 es la nula de la misma dimensión de A
Opuesta: todos los elementos están cambiados de signo
Conmutativa: A+B = B+A
Producto: Son multiplicables si las columnas de A coincide con la cantidad en renglon de B
se multiplica cada elemento de la fila A por los cada elemento de columna B y se suman:
Propiedadaes:
Asociativa: A*(B*C) = (A*B)*C
Neutro: A*1 = A
No es conmutativa: A*B ≠ B*A
Distributiva respecto a la suma: A * (B+C) = A * B+A*C
Operaciones Elementales:
Cambiar entre sí dos columnas
Multiplicar una fila (columna) por un número real distinto a cero
Sumar a una fila (columna) otra, multiplicada por uno real
Matriz Inversa:
Por medio de estas operaciones hasta que el resultado sea A con exponente -1
Se obtienen 3 equivalencias: se trianguliza superior e inferiormente y se obtiene 1 en la diagonal principal
Determinantes
El determinante le asigna a una matriz cuadrada un único número real
Propiedades:
El det. de una matriz A y su traspuesta At son iguales.
Dos filas y Dos columnas iguales
Todos los elementos de una fila y columna son nulos
Los de un reglón son combinación lineal de los otros
Determinante NxN
Representa todos los productos posibles en los que hay un elemento de cada fila y columna. Son matrices superiores a 3x3
Anexos de mídia
Vector+Columna (binary/octet-stream)
Vector+Renglon (binary/octet-stream)
Longitud+V (binary/octet-stream)
Dirección+V (binary/octet-stream)
Vector+Dif 0 (binary/octet-stream)
Recíproco (binary/octet-stream)
Suma+De+Vectores (binary/octet-stream)
Resta+De+Vectores (binary/octet-stream)
Multiplicacion+De+Vector (binary/octet-stream)
Triangular+Superior (binary/octet-stream)
Triangular+Inferior (binary/octet-stream)
Mdiagonal (binary/octet-stream)
Escalar (binary/octet-stream)
M+Identidad (binary/octet-stream)
Producto+Matriz (binary/octet-stream)
Propiedad+At=A (binary/octet-stream)
A=0+Si (binary/octet-stream)
Nulos (binary/octet-stream)
Combinación+Lineal (binary/octet-stream)
Quer criar seus próprios
Mapas Mentais
gratuitos
com a GoConqr?
Saiba mais
.
Semelhante
Matrices y Determinantes
Diego Santos
Vectores en R2 y R3: Expresión algebraica de vector, norma, ángulos directores, vectores unitarios
Diana Páez
PROCESOS BÁSICOS GEOMETRÍA ESPACIAL
Paco Torres
vectores en 2 y 3 dimensiones
Leslie Leon
ELEMENTOS VECTORIALES
Leslie Leon
COMPONENETES DE UN VECTOR
juan david tiga
Elementos de los vectores
valencia campo j
Matrices y Determinantes
Victor Rodriguez
MATRICES Y DETERMINANTES
andresfelipe_int
Regla de Cramer y solución de sistema de ecuaciones
Enrique Israel|
Determinantes
JHON MARLON ROMERO GONZALEZ
Explore a Biblioteca