Surveys and Sampling

Beschreibung

Chapter 6
Journey P
Karteikarten von Journey P, aktualisiert more than 1 year ago
Journey P
Erstellt von Journey P vor etwa 6 Jahre
9
0

Zusammenfassung der Ressource

Frage Antworten
Interviews Questions are read to the respondent in person or phone Can be structured or unstructured
Interview Advantages Able to reach otherwise “unreachable” populations Increases respondent understanding Develop rapport Obtain detailed information about complex subjects Can follow-up to what they say
Interview Disadvantages Costly Increased training of researcher Time consuming Landlines for phones Response bias because of social desirability
Questionnaires A set of fixed-format, self-report items respondents complete at their own pace often without supervision Generally written
Questionnaire Advantages Comparatively/Inexpensive Anonymity/Confidentiality
Questionnaire Disadvantages *Lower response rates *Increased random error
Response Rate Percentage of people who: complete a questionnaire and return it to the investigators If low = incorrect conclusions about research Systematic difference? If so, validity issues!
Techniques to increase response rate Gift incentive Visually pleasing Confidentiality/anonymity Follow up
Sampling Terminology Population Census Sampling Sample Sampling Frame Representative Sample
Population The entire group of people the researcher desires to learn about
Census Measures each person about whom we wish to know
Sampling The selection of people to participate in a research project We use these people to make inferences about a larger group of individuals
Sample The smaller group of people who actually participate in the research
Sampling Frame A complete list of all of the people in the population
Representative Sample Approximately the same as the population in every important respect
Ways to Sample Whenever samples are used, the researcher will never be able to know exactly the true characteristics of the population Goal: get as close as you can so the data that you gain from the sample can be applied to the general population.
Probability sampling Each person in the population has a known chance of being selected HAVE to have a sampling frame!
Simple random sampling Each person in the population has an equal chance of being selected. Process: select people/objects from the sampling frame at random until you reach a desired amount of people/objects in your sample
Systematic random sampling If the list of names on the sampling frame is known to be in a random sequence, every nth name can be selected Draw a number blindly to tell you where to start on the random list Population size/sample size you want = #
Stratified Sampling Involves drawing separate samples from a set of known subgroups called strata rather than sampling from the population as a whole. This is done to be representative of various variables, such as age, gender, ethnicity, geographic region, etc.
Sampling Bias Probability sampling (aka – “representative sampling”) assumes: The existence of one or more sampling frames listing the entire population of interest and Everyone has the potential to be sampled
Sampling Bias Occurs when either of these conditions is not met There is the potential the sample is not representative of the population
Non-probability Sampling - Use when probability sample are impossible or not necessary (e.g. – no sampling frame of the population).
Non-probability Sampling Snowball sampling Rare or difficult to reach population One or more individuals from the population are contacted These individuals lead the researcher to other population members
Non-Probability Sampling Convenience/Volunteer samples The researcher samples whatever individuals are readily available without any attempt to make the sample representative
Non-Probability Sampling Purposive Sampling (judgmental) Based on: Researchers knowledge of the population Purpose of the study Sample selection is based on some unique characteristic of the people in the population that is essential to the study
I have the sample and collected my data. What do I do now??? Raw Data
Raw Data Data collected from each measured variable must be aggregated and transformed to be meaningfully interpreted techniques: Frequency distributions Descriptive statistics
Frequency Distributions A table indicating how many individuals (and what %) in the sample fall into each of a set of categories Nominal (discreet) variables
Bar Chart A visual display of a frequency distribution
Grouped Frequency Distributions shows the frequency of a subset of scores by combining adjacent values into a set of categories Approach to summarizing quantitative variables (as well as continuous)
Histogram A visual display of a grouped frequency distribution
Frequency Curve Frequencies in a grouped frequency distribution are indicated with a line rather than bars Useful for trends over time
Descriptive Statistics Numbers that summarize the pattern of scores observed on a measured variable This pattern is called the distribution of the variable A distribution can be described by: Central tendency and Dispersion (spread)
Central tendency Summarized using the Mean Median Mode
Dispersion Summarized using the Variance Standard deviation
Measures of Central Tendency The Mean -Arithmetic mean- The most commonly used measure of central tendency Basically the “Average” = x or x; μ Can have only one mean per distribution influenced by extreme scores (called outliers) EX = 80, 95, 60, 76, 91
Measures of Central Tendency The Median The score in the center of the distribution Only one value per distribution Not influenced by extreme values Used when distributions are not “normal” (skewed) EX = 80, 95, 60, 76, 91 Rank order from lowest to highest Median will be the score in the middle
Measures of Central Tendency The Mode The value that occurs most frequently in a distribution 1 or more modes Not influenced by extreme values Gives the least information in terms of description Ex: 1,1,2,3,4,4,4,8,9 Median? Mode?
Distribution The pattern of scores observed on a measured variable Data distributions that are shaped like a bell are known as normal distributions “Non-normal” shapes are known as skewed
Shapes of Distributions In a normal distribution, all three measures of central tendency fall at the same point on the distribution.
Skewed (NOT Normal) Distributions -Outliers- Extreme scores in a distribution Result in distributions that are not symmetrical
Skewed Distributions that are not symmetrical Can be either positively or negatively skewed
Shapes of Distributions In a positively skewed distribution, the outliers are on the right side of the distribution. In a negatively skewed distribution, the outliers are on the left side of the distribution.
Measures of Dispersion Dispersion (‘the spread’) Extent to which the scores are tightly clustered around or spread out away from the central tendency
Range One simple measure of dispersion least useful measurement of dispersion Calculated as the maximum observed score minus the minimum observed score
The Standard Deviation The most common measure of dispersion useful for describing how much the scores in a set of data vary. Symbolized as s and calculated by: Computing each score minus the mean of the variable (mean deviations) Squaring the mean deviations and summing them (sum of squares) Dividing the sum of squares by the sample size, N (variance or s2) Taking the square root of the variance (standard deviation or s)
Standard Deviation and the Normal Curve Assuming a normal distribution, we can estimate the percentage of subjects who obtain certain scores just by knowing the mean and standard deviation of the data. The Empirical Rule: Approximately 68% of the scores will fall in the range defined as +/- 1 standard deviation Approximately 95% of the scores will fall between +/- 2 standard deviations from the mean. Approximately 99% of the scores will fall between +/- 3 standard deviations from the mean.
Sample Size and the Margin of Error Ultimate purpose of descriptive stats: Make inferences about the population Because of random error, sample characteristics will most likely not be exactly the same as the population. Frequently known as the margin of error of the sample
Sample Size and the Margin of Error To minimize Margin of Error: Increase the size of a sample (N) Makes it more likely the sample will be representative of the population Provides more precise estimates of population characteristics
Zusammenfassung anzeigen Zusammenfassung ausblenden

ähnlicher Inhalt

Dental Radiography Landmarks
Sarah Latronico
Anatomy of the Head and Neck
Lois Le
Dental Materials
N N
Dental Radiography Errors
Sarah Latronico
Correlational Research Designs
Journey P
Abiturvorbereitung (1 Monat)
AntonS
Modul 2C FernUni Hagen Pflichtlektüre
Anni T-Pünktchen
Lerntheorien
Pet Rei
Shakespeare and the Elizabethan World
Laura Overhoff
Vetie - Tierzucht & Genetik - S V
Fioras Hu
Vetie Tierseuchen 2019 - Anzeigepflichtig/Meldepflichtig
Peter Christian Ponn