Relationen

Description

Mathematik für Informatiker I (Grundlagen (Mengenlehre und Logik)) Mind Map on Relationen, created by Maximilian Gillmann on 25/03/2014.
Maximilian Gillmann
Mind Map by Maximilian Gillmann, updated more than 1 year ago
Maximilian Gillmann
Created by Maximilian Gillmann almost 11 years ago
32
0

Resource summary

Relationen
  1. Eigenschaften
    1. reflexiv
      1. (a,a) in R
      2. symmetrisch
        1. (a,b) in R => (b,a) in R
        2. antisymmetrisch
          1. (a,b) und (b,a) in R <=> a = b
          2. transitiv
            1. (a,b) und (b,c) in R => (a,c) in R
          3. Äquivalenzrelation
            1. reflexiv, symmetrisch, transitiv
              1. Beispiel
                1. Schüler einer Schule
                  1. Menge der Schulklassen ist Quotientenmenge
                    1. a ~ b := a ist in der selben Klasse wie b
                      1. Jede Klasse ist Äquivalenzklasse
                    2. Äquivalenzklasse
                      1. Menge aller Elemente aus A für die eine Äquivalenzrelation definiert
                      2. Quotientenmenge
                        1. Menge aller Äquivalenzklassen
                      3. Ordnungsrelation
                        1. reflexiv, antisymmetrisch, transitiv
                          1. Vergleichbar wenn gilt
                            1. totale/ partielle Ordnung
                              1. total
                                1. je zwei Elemente sind miteinander Vergleichbar
                                2. partiell
                                  1. nicht alle Elemente sind paarweise miteinander vergleichbar
                              Show full summary Hide full summary

                              Similar

                              Grundlagen (Mengenlehre und Logik)
                              Maximilian Gillmann
                              Abbildungen zwischen Mengen
                              Maximilian Gillmann
                              Vektorräume
                              Maximilian Gillmann
                              Grundlagen Vektorraum
                              Maximilian Gillmann
                              Bilinearform, Skalarprodukte und Orthogonale Abbildungen
                              Maximilian Gillmann
                              Komplexe Zahlen
                              Maximilian Gillmann
                              Determinanten
                              Maximilian Gillmann