Selbstadjunkte Abbildungen und Singulärwertzerlegung

Descripción

(Bilinearformen, Skalarprodukte, Spektralsätze) Mathematik für Informatiker I Fichas sobre Selbstadjunkte Abbildungen und Singulärwertzerlegung, creado por Maximilian Gillmann el 05/04/2014.
Maximilian Gillmann
Fichas por Maximilian Gillmann, actualizado hace más de 1 año
Maximilian Gillmann
Creado por Maximilian Gillmann hace más de 10 años
27
0

Resumen del Recurso

Pregunta Respuesta
Was ist gilt bei einer selbstadjungierten Abbildung?
Was sind die Besonderheiten bei einer selbstadjungierten Abbildung? Darstellungsmatrix M_BB(F) ist symmetrisch Eigenvektoren zu verschiedenen EW sind orthogonal
Was ist die Voraussetzung für den Spektralsatz? Euklidischer VR mit selbstadj. Endomorphismus
Was besagt der Spektralsatz? Es existiert eine Orthonormalbasis von V aus den Eigenvektoren von F.
Was besagt die Hauptachsentransformation? Hinweis: A symmetrisch, T orthogonale Matrix
Wie sieht die Singulärwertzerlegung aus?
Beschreibe die Matrizen U, S und V bei der Singulärwertzerlegung. U (m,m), V (n, n) - orthogonal S - Diagonalmatrix
Wie erhält man die Singulärwerte? Wurzel der Eigenwerte von A^T * A
Was gilt für die Singulärwerte, wenn A symmetrisch ist? Singulärwerte sind die Beträge ihrer Eigenwerte von A.
Mostrar resumen completo Ocultar resumen completo

Similar

Bilinearform, Skalarprodukte und Orthogonale Abbildungen
Maximilian Gillmann
Singulärwertzerlegung
Maximilian Gillmann
Orthogonale Abbildungen
Maximilian Gillmann
Bilinearform
Maximilian Gillmann
Skalarprodukte
Maximilian Gillmann
Selbstadjunkte Abbildungen
Maximilian Gillmann
Vektorräume
Maximilian Gillmann
Grundlagen Vektorraum
Maximilian Gillmann
Grundlagen (Mengenlehre und Logik)
Maximilian Gillmann
Komplexe Zahlen
Maximilian Gillmann